Featured Research

from universities, journals, and other organizations

How spiders breathe under water: Spider's diving bell performs like gill extracting oxygen from water

Date:
June 13, 2011
Source:
Journal of Experimental Biology
Summary:
Water spiders spend their entire lives under water, only venturing to the surface to replenish their diving bell air supply. Yet no one knew how long the spiders could remain submerged until Roger Seymour and Stefan Hetz measured the bubble's oxygen level. They found that the diving bell behaves like a gill sucking oxygen from the water and the spiders only need to dash to the surface once a day to supplement their air supply.

Water spiders spend their entire lives under water, only venturing to the surface to replenish their diving bell air supply. Yet no one knew how long the spiders could remain submerged until Roger Seymour and Stefan Hetz measured the bubble's oxygen level. They found that the diving bell behaves like a gill sucking oxygen from the water and the spiders only need to dash to the surface once a day to supplement their air supply.

Gazing into the depths of a pond, it's hard to miss the insects that whirl and zip beneath the surface. However, only one species of spider has joined them: the diving bell spider, Argyroneta aquatica.

"It is an iconic animal; I had read about the spider as a small boy in popular literature about ponds," says Roger Seymour from the University of Adelaide. According to Seymour, each spider constructs a net of silk in vegetation beneath the surface and fills it with air carried down on its abdomen. The spiders spend their entire lives submerged and even lay their eggs in their diving bells. Having already used an oxygen-measuring device called an optode to discover how aquatic insects extract oxygen from water through thin bubbles of air stretched across their abdomens, Seymour was looking for other small bubbles to test his optode.

"The famous water spider came to mind," remembers Seymour, and when he mentioned the possibility to Stefan Hetz from Humboldt University, Germany, Hetz jumped at the idea. Inviting Seymour to his lab, the duo decided to collect some of the arachnids to find out how they use their diving bells. In The Journal of Experimental Biology, the duo report their discovery that the spiders can use the diving bell like a gill to extract oxygen from water to remain hidden beneath the surface.

Sadly, diving bell spiders are becoming increasingly rare in Europe; however, after obtaining a permit to collect the elusive animals, the duo eventually struck lucky in the Eider River. "My philosophy is to make some measurements and be amazed because if you observe nature it tells you much more than you could have imagined," says Seymour. So, returning to the lab, the team reproduced the conditions in a warm stagnant weedy pond on a hot summer's day to find out how the spiders fare in the most challenging of conditions.

After watching the spiders build their shimmering diving bells, the duo gingerly poked an oxygen sensing optode into the bubble to see how the animal reacted. Miraculously, the spider was unperturbed, so they continued recording the oxygen level. "Then it occurred to me that we could use the bubble as a respirometer," says Seymour, to find out how much oxygen the spiders consume.

Taking a series of oxygen measurements in the bubble and surrounding water, the team calculated the amount of oxygen flowing into the bubble before calculating the spider's oxygen consumption rate and found that the diving bell could extract oxygen from the most stagnant water even on a hot day. Also, the metabolic rate of the aquatic spider was low and similar to the low metabolic rates of other spiders that sit waiting for prey to pass.

However, despite satisfying the spider's oxygen demands, the bubble continually shrinks because nitrogen diffuses back into the water, eventually forcing the occupant to venture to the surface to resupply the diving bell. So how long could the bubble survive before the spider had to dash up for air? Calculating the diffusion rate of nitrogen out of the bubble, Seymour and Hetz were surprised to find that the spiders could sit tight for more than a day. "The previous literature suggested they had to come to the surface as often as every 20-40min throughout the day," comments Seymour, who adds, "It is advantageous for the spiders to stay still for so long without having to go to the surface to renew the bubble, not only to protect themselves from predation but also so they don't alert potential prey that come near."


Story Source:

The above story is based on materials provided by Journal of Experimental Biology. The original article was written by Kathryn Knight. Note: Materials may be edited for content and length.


Journal Reference:

  1. Roger S. Seymour, Stefan K. Hetz. The diving bell and the spider: the physical gill of Argyroneta aquatica. Journal of Experimental Biology, 2011; 214: 2175-2181 DOI: 10.1242/%u200Bjeb.056093

Cite This Page:

Journal of Experimental Biology. "How spiders breathe under water: Spider's diving bell performs like gill extracting oxygen from water." ScienceDaily. ScienceDaily, 13 June 2011. <www.sciencedaily.com/releases/2011/06/110609105527.htm>.
Journal of Experimental Biology. (2011, June 13). How spiders breathe under water: Spider's diving bell performs like gill extracting oxygen from water. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2011/06/110609105527.htm
Journal of Experimental Biology. "How spiders breathe under water: Spider's diving bell performs like gill extracting oxygen from water." ScienceDaily. www.sciencedaily.com/releases/2011/06/110609105527.htm (accessed August 30, 2014).

Share This




More Plants & Animals News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins