Featured Research

from universities, journals, and other organizations

NASA goes below the surface to understand salinity

Date:
June 10, 2011
Source:
NASA/Jet Propulsion Laboratory
Summary:
When NASA's Aquarius mission launches, its radiometer instruments will take a "skin" reading of the oceans' salt content at the surface. From these data of salinity in the top 0.4 inch (1 centimeter) of the ocean surface, Aquarius will create weekly and monthly maps of ocean surface salinity all over the globe for at least three years. To better understand what's driving changes and fluctuations in salinity -- and how those changes relate to an acceleration of the global water cycle and climate change -- scientists will go deeper.

Scientists will set their sights on taking an unprecedented variety of measurements around one of the saltiest spots in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) experiment, in concert with NASA’s Aquarius mission.
Credit: NASA/SPURS

When NASA's Aquarius mission launches, its radiometer instruments will take a "skin" reading of the oceans' salt content at the surface. From these data of salinity in the top 0.4 inch (1 centimeter) of the ocean surface, Aquarius will create weekly and monthly maps of ocean surface salinity all over the globe for at least three years. To better understand what's driving changes and fluctuations in salinity -- and how those changes relate to an acceleration of the global water cycle and climate change -- scientists will go deeper.

That's why scientists working on, Aquarius, the newest NASA Earth System Science Pathfinder mission aboard the Argentine-built Satelite de Aplicaciones Cientificas (SAC)-D observatory, have devised a plan. They will deploy instruments on floats, research ships, commercial cargo ships, free-drifting platforms, buoys, underwater gliders, and an autonomous underwater vehicle to build a 3-D view of what's happening beneath the ocean surface that affects salinity distribution.

Along with temperature, ocean salinity is a key driver of ocean currents, a critical factor in climate processes, and an indicator of Earth's changing water cycle. Measuring salinity from space has been one of the great technological challenges of satellite ocean studies. But once Aquarius starts delivering its salinity data, with accuracy equal to a pinch of salt in a gallon of water, a new challenge begins.

"The next question is: How do you understand what the satellite sees?" said Yi Chao of NASA's Jet Propulsion Laboratory in Pasadena, Calif. Cho is the Aquarius project scientist. "Without deploying instruments under the ocean's surface, we do not know how to fully interpret the satellite observations of surface salinity."

To help address that question, NASA has a new field experiment: SPURS -- Salinity Processes in the Upper Ocean Regional Study. The experiment, which will sample salinity and other key factors, such as ocean temperature and velocity, will take place from spring 2012 to summer 2013 and will include five month-long research ship cruises to the center of the saltiest region in the Atlantic Ocean. In oceanography lingo, it's known as the "Atlantic surface salinity maximum," and it's located about halfway between the southeast U.S. coast and the western coast of North Africa, at about 25 degrees north and 38 degrees west. Many of the methods used for years to take in-ocean measurements of salinity will be put to use, but in a far more concentrated and intensive manner, and, for the first time, they'll be used in combination with Aquarius' satellite salinity readings.

SPURS scientists hope to replicate the study in a contrasting, relatively low-salinity region elsewhere in the ocean in the future.

The scope of the measurements taken during SPURS will give scientists deeper insights into the salinity observations from Aquarius and the physical processes -- temperature changes, currents, turbulence, evaporation, precipitation -- that affect salinity. These are all aspects of the global water cycle, the continuous movement of water through the Earth system by evaporation, condensation, precipitation and runoff. Water cycles from the ocean to the atmosphere and then back to the ocean, either directly or via melting ice caps, rivers or underground aquifers. Scientists see evidence of an accelerating water cycle, driven by climate change. Salinity measurements can indicate how the patterns of freshwater mixing with saltwater are changing due to changes in precipitation, evaporation, and freshwater runoff from rivers and melting ice.

"One of the big questions is how much will the water cycle accelerate because of warming?" said Raymond Schmitt, project scientist for SPURS and an oceanographer at Woods Hole Oceanographic Institution in Woods Hole, Mass. In short, as Earth's lowermost atmospheric layer, the troposphere, warms, its ability to hold water in the form of water vapor increases. This, in turn, increases evaporation over land and the ocean, and quickens the cycle as a whole. As precipitation and evaporation patterns change -- thus changing how freshwater mixes with salty water -- so do salinities.

"We're seeing big changes in ocean salinities that can only be explained by an increase in the water cycle," Schmitt said. "We see this changing salinity, and we want to relate it to the changing water cycle -- but we have to understand what the ocean is doing."

Designing a Multi-platform Experiment at Sea

The ocean makes up 71 percent of Earth's surface area and represents 97 percent of the world's volume of water. Measuring what's happening with salinity everywhere in the ocean at every depth is an impossible task. So the SPURS scientists decided to focus on one representative region and measure that as a proxy. A network of different instruments creates a "bounded" volume of water to study in the SPURS experiment.

SPURS precisely identifies a specific 3-D portion of the Atlantic Ocean, and sets out to measure key ocean processes there as thoroughly as possible. Starting at the surface, commercial cargo ships carrying basic salinity gauges and deploying disposable thermometers will criss-cross the target region on their regular trade routes. Ocean scientists have partnered with commercial ships to do this for years. SPURS will also take advantage of the existing Argo network of profiling floats that measure temperature and salinity at the surface and below. The floats dive as deep as 1.2 miles (2 kilometers), while returning to the surface every 10 days to transmit their measurements via satellite. The international scientific collaboration began in the late 1990s and now maintains more than 3,000 floats worldwide.

It is the multiple additions beyond these existing measurements that will make SPURS more complex than a typical study of ocean processes. Multiple buoys will take basic meteorological measurements at the surface. But cables running to anchors on the ocean bottom will stretch down as deep as 2.5 miles (4 kilometers) below the surface, while instruments deployed on the cables at different depths will take salinity, temperature and velocity readings. SPURS will also draw on data from NOAA's existing PIRATA (Prediction and Research Array Moored in the Atlantic) network, which uses similar buoys moored to the ocean floor.

In addition, about 75 free-floating surface drifters, outfitted with GPS, temperature and salinity instruments, will be deployed in a radius of several hundred kilometers. Beneath the surface, NASA will deploy teams of two kinds of "gliders" -- torpedo-like autonomous devices that use slight changes in buoyancy and wings to dive up and down and propel themselves forward, collecting data with instruments onboard.

One class of smaller gliders, called "Slocum gliders," which operate in shallower water, will be deployed for 20 to 30 days during each research cruise. Multiple "Seagliders" will also be deployed for six to nine months at a time. These gliders travel in a wider circumference and dive to greater depths.

Finally, from on board during each of the five one-month ship cruises to the site, scientists will operate a CTD profiler (CTD stands for Conductivity, Temperature and Depth) and a battery-powered, propeller-driven autonomous underwater vehicle that they'll be able to control remotely.

"Salinity has never been measured to the level of detail that SPURS is planning," Chao said.

The questions Chao, Schmitt and others hope to begin to answer with SPURS range from the smallest to the largest scale. For one, what are the physical processes that determine the location and magnitude of the high-salinity region in the Atlantic being studied? What is the salinity balance on monthly and seasonal time scales, plus regional and larger spatial scales?

Larger questions include how the ocean will respond to temperature and freshwater changes likely to come with a warming climate. How will the meridional overturning circulation -- the "global ocean conveyor belt," which has such a dominant effect on the planet's climate -- change?

"We can see in the patterns of salinity change that something big is going on with the water cycle," Schmitt said. "Eighty percent of the water cycle happens over the ocean. We need to document and understand how the ocean is responding."

For more information on this topic, see: http://www.nasa.gov/aquarius and http://spurs.jpl.nasa.gov/ .


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "NASA goes below the surface to understand salinity." ScienceDaily. ScienceDaily, 10 June 2011. <www.sciencedaily.com/releases/2011/06/110609144155.htm>.
NASA/Jet Propulsion Laboratory. (2011, June 10). NASA goes below the surface to understand salinity. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2011/06/110609144155.htm
NASA/Jet Propulsion Laboratory. "NASA goes below the surface to understand salinity." ScienceDaily. www.sciencedaily.com/releases/2011/06/110609144155.htm (accessed September 15, 2014).

Share This



More Earth & Climate News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

AFP (Sep. 12, 2014) — In June 2013, 10 foreign mountaineers and their guide were murdered on Nanga Parbat, an iconic peak that stands at 8,126m tall in northern Pakisan. Duration: 02:34 Video provided by AFP
Powered by NewsLook.com
Solar Storm To Hit This Weekend, Scientists Not Worried

Solar Storm To Hit This Weekend, Scientists Not Worried

Newsy (Sep. 11, 2014) — Two solar flares which erupted in our direction this week will arrive this weekend. The resulting solar storm will be powerful but not dangerous. Video provided by Newsy
Powered by NewsLook.com
The Ozone Layer Is Recovering, But It's Not All Good News

The Ozone Layer Is Recovering, But It's Not All Good News

Newsy (Sep. 11, 2014) — The Ozone layer is recovering thickness! Hooray! But in helping its recovery, we may have also helped put more greenhouse gases out there. Hooray? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins