Featured Research

from universities, journals, and other organizations

Single GFP-expressing cell is basis of living laser device

Date:
June 13, 2011
Source:
Massachusetts General Hospital
Summary:
Researchers have developed a device in which a single cell genetically engineered to express green fluorescent protein is used to amplify the light particles called photons into nanosecond-long pulses of laser light.

Microscope image of a single-cell living laser in action. The irregular internal structure of the green-fluorescent-protein-expressing cell causes the apparently random pattern of laser light emission.
Credit: Nature Photonics and Malte Gather, Wellman Center for Photomedicine, Mass. General Hospital

It sounds like something out of a comic book or a science fiction movie -- a living laser -- but that is exactly what two investigators at the Wellman Center for Photomedicine at Massachusetts General Hospital have developed. In a report that will appear in the journal Nature Photonics and is receiving advance online release, Wellman researchers Malte Gather, PhD, and Seok Hyun Yun, PhD, describe how a single cell genetically engineered to express green fluorescent protein (GFP) can be used to amplify the light particles called photons into nanosecond-long pulses of laser light.

Related Articles


"Since they were first developed some 50 years ago, lasers have used synthetic materials such as crystals, dyes and purified gases as optical gain media, within which photon pulses are amplified as they bounces back and forth between two mirrors," says Yun, corresponding author of the report. "Ours is the first report of a successful biological laser based on a single, living cell."

Adds Gather, a research fellow and the paper's lead author, "Part of the motivation of this project was basic scientific curiosity. In addition to realizing that biological substances had not played a major role in lasers, we wondered whether there was a fundamental reason why laser light, as far as we know, does not occur in nature or if we could find a way to achieve lasing in biological substances or living organisms."

The investigators chose GFP for their exploration of those questions because the protein -- originally found in a species of jellyfish -- can be induced to emit light without the application of additional enzymes. Its properties are well understood, and there are established techniques to genetically program many organisms to express GFP. To determine the protein's potential for generating laser light, the researcher first assembled a device consisting of an inch-long cylinder, with mirrors at each end, filled with a solution of GFP in water. After first confirming that the GFP solution could amplify input energy into brief pulses of laser light, the researchers estimated the concentration of GFP required to produce the laser effect.

Using that information, their next step was to develop a line of mammalian cells expressing GFP at the required levels. The cellular laser was assembled by placing a single GFP-expressing cell -- with a diameter of from 15 to 20 millionths of a meter -- in a microcavity consisting of two highly reflective mirrors spaced 20 millionths of a meter apart. Not only did the cell-based device produce pulses of laser light as in the GFP solution experiment, the researchers also found that the spherical shape of the cell itself acted as a lens, refocusing the light and inducing emission of laser light at lower energy levels than required for the solution-based device. The cells used in the device survived the lasing process and were able to continue producing hundreds of pulses of laser light.

"While the individual laser pulses last for only a few nanoseconds, they are bright enough to be readily detected and appear to carry very useful information that may give us new ways to analyze the properties of large numbers of cells almost instantaneously," says Yun, who is an associate professor of Dermatology at Harvard Medical School. "And the ability to generate laser light from a biocompatible source placed inside a patient could be useful for photodynamic therapies, in which drugs are activated by the application of light, or novel forms of imaging."

Gather adds, "One of our long-term goals will be finding ways to bring optical communications and computing, currently done with inanimate electronic devices, into the realm of biotechnology. That could be particularly useful in projects requiring the interfacing of electronics with biological organisms. We also hope to be able to implant a structure equivalent to the mirrored chamber right into a cell, which would the next milestone in this research." The study was supported by grants from the National Science Foundation and the Korea National Research Foundation.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Malte C. Gather, Seok Hyun Yun. Single-cell biological lasers. Nature Photonics, 2011; DOI: 10.1038/nphoton.2011.99

Cite This Page:

Massachusetts General Hospital. "Single GFP-expressing cell is basis of living laser device." ScienceDaily. ScienceDaily, 13 June 2011. <www.sciencedaily.com/releases/2011/06/110613012810.htm>.
Massachusetts General Hospital. (2011, June 13). Single GFP-expressing cell is basis of living laser device. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2011/06/110613012810.htm
Massachusetts General Hospital. "Single GFP-expressing cell is basis of living laser device." ScienceDaily. www.sciencedaily.com/releases/2011/06/110613012810.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins