Featured Research

from universities, journals, and other organizations

X-ray telescope finds new voracious black holes in early universe

Date:
June 15, 2011
Source:
University of Michigan
Summary:
Using the deepest X-ray image ever taken, astronomers have found the first direct evidence that massive black holes were common in the early universe. This discovery from NASA's Chandra X-ray Observatory shows that very young black holes grew more aggressively than previously thought, in tandem with the growth of their host galaxies.

This composite image from NASA's Chandra X-ray Observatory and Hubble Space Telescope combines the deepest X-ray, optical and infrared views of the sky. Using these images, astronomers have obtained the first direct evidence that black holes are common in the early universe and shown that very young black holes grew more aggressively than previously thought.
Credit: X-ray: NASA/CXC/U.Hawaii/E.Treister et al; Optical: NASA/STScI/S.Beckwith et al

Using the deepest X-ray image ever taken, a University of Michigan astronomer and her colleagues have found the first direct evidence that massive black holes were common in the early universe. This discovery from NASA's Chandra X-ray Observatory shows that very young black holes grew more aggressively than previously thought, in tandem with the growth of their host galaxies.

By pointing Chandra at a patch of sky for over six weeks, astronomers obtained what is known as the Chandra Deep Field South (CDFS). When combined with very deep optical and infrared images from NASA's Hubble Space Telescope, the new Chandra data allowed astronomers to search for black holes in 200 distant galaxies, from when the universe was between about 800 million and 950 million years old.

"We had reason to expect that black holes existed in many of the very first galaxies, but they had evaded our searches until now. When I compared Chandra's data to my theoretical models I was stunned by their agreement. It's the dream of any theoretician," said Marta Volonteri, a U-M associate professor of astronomy and co-author of the study that appears in this week's Nature.

The super-sized growth means that the black holes in the CDFS are related to quasars, very luminous, rare objects powered by material falling onto supermassive black holes. However, the sources in the CDFS are about a hundred times fainter, and the black holes are about a thousand times less massive than the ones in quasars.

It was found that between 30 percent and 100 percent of the distant galaxies contain growing supermassive black holes. Extrapolating these results from the small observed field to the full sky, there are at least 30 million supermassive black holes in the early Universe. This is a factor of 10,000 larger than the estimated number of quasars in the early Universe.

"It appears we've found a whole new population of baby black holes," said co-author Kevin Schawinski of Yale University. "We think these babies will grow by a factor of about a hundred or a thousand, eventually becoming like the giant black holes we see today almost 13 billion years later."

A population of baby black holes in the early universe had been predicted, but not yet observed. Detailed calculations show that the total amount of black hole growth observed by this team is about a hundred times higher than recent estimates.

"Until now, we had no idea what the black holes in these early galaxies were doing -- or if they even existed," said Ezequiel Treister of the University of Hawaii, lead author of the study. "Now we know they are there and they are growing like gangbusters."

Because these baby black holes are nearly all enshrouded in thick clouds of gas and dust, optical telescopes frequently cannot detect them. However, the high energies of X-ray light can penetrate these veils, allowing the black holes inside to be studied.

Two critical issues in black hole physics are how the first supermassive black holes were formed and how they grow. Although evidence for parallel growth of black holes and galaxies has been established at closer distances, the new Chandra results show that this connection starts earlier than previously thought, perhaps right from the origin of both.

"Most astronomers think in the present-day universe, black holes and galaxies are somehow symbiotic in how they grow," said Priya Natarajan, a co-author from Yale University. "We have shown that this codependent relationship has existed from very early times."

It has been suggested that early black holes would play an important role in clearing away the cosmic "fog" of neutral (uncharged) hydrogen that pervaded the early universe when temperatures cooled down after the Big Bang. However, the Chandra study shows that blankets of dust and gas stop ultraviolet radiation generated by the black holes from traveling outwards to perform this "reionization." Therefore, stars and not growing black holes are likely to have cleared this fog at cosmic dawn.

Chandra is capable of detecting extremely faint objects at vast distances, but these black holes are so obscured that relatively few photons can escape and hence they could not be individually detected. Instead, the team used a technique that relied on Chandra's ability to very accurately determine the direction from which the X-rays came to add up all the X-ray counts near the positions of distant galaxies and find a statistically significant signal.

The other co-author of the Nature paper is Eric Gawiser from Rutgers University in New Jersey.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ezequiel Treister, Kevin Schawinski, Marta Volonteri, Priyamvada Natarajan, Eric Gawiser. Black hole growth in the early Universe is self-regulated and largely hidden from view. Nature, 2011; 474 (7351): 356 DOI: 10.1038/nature10103

Cite This Page:

University of Michigan. "X-ray telescope finds new voracious black holes in early universe." ScienceDaily. ScienceDaily, 15 June 2011. <www.sciencedaily.com/releases/2011/06/110615171416.htm>.
University of Michigan. (2011, June 15). X-ray telescope finds new voracious black holes in early universe. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/06/110615171416.htm
University of Michigan. "X-ray telescope finds new voracious black holes in early universe." ScienceDaily. www.sciencedaily.com/releases/2011/06/110615171416.htm (accessed April 17, 2014).

Share This



More Space & Time News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Baby Moon 'Peggy' Spotted In Saturn's Rings

New Baby Moon 'Peggy' Spotted In Saturn's Rings

Newsy (Apr. 15, 2014) A bump in the rings could be a half-mile-wide miniature moon. It was found by accident in Cassini probe images. Video provided by Newsy
Powered by NewsLook.com
Americas Glimpse Total Lunar Eclipse

Americas Glimpse Total Lunar Eclipse

AFP (Apr. 15, 2014) A total lunar eclipse, the first since December 2011, took place early Tuesday morning with the Americas getting the best glimpse. Duration: 1:19 Video provided by AFP
Powered by NewsLook.com
NASA Showcases Lunar Eclipse

NASA Showcases Lunar Eclipse

AP (Apr. 15, 2014) Star gazers in parts of North and South America got a rare treat early Tuesday morning - a total eclipse of the moon. (April 15) Video provided by AP
Powered by NewsLook.com
Spacecrafts Could Use Urine As Fuel Source

Spacecrafts Could Use Urine As Fuel Source

Newsy (Apr. 15, 2014) New research says the urea from urine could be recycled for fuel. Urea is filtered out of wastewater when making drinking water. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins