Featured Research

from universities, journals, and other organizations

New insights on an old material will enable design of better polymer batteries, water purification

Date:
June 20, 2011
Source:
Virginia Tech
Summary:
Scientists have devised a way to measure Nafion's internal structure and, in the process, have discovered how to manipulate this structure to enhance the material's applications.

This image illustrates how the channels in a polymer electrolyte membrane material change when you stretch it. On the left is an unstretched sample of the material. The middle sample has been stretched at a ratio of 2:1, while the sample on the right, which shows the most channel alignment, has been stretched at a ratio of 4:1.
Credit: Dr. Jing Li and Prof. Louis Madsen of Virginia Tech

Designing new materials depends upon understanding the properties of today's materials. One such material, Nafion ©, is a polymer that efficiently conducts ions (a polymer electrolyte) and water through its nanostructure, making it important for many energy-related industrial applications, including in fuel cells, organic batteries, and reverse-osmosis water purification. But since Nafion was invented 50 years ago, scientists have only been able to speculate about how to build new materials because they have not been able to see details on how the molecules come together and work within Nafion.

Now, two Virginia Tech research groups have combined forces to devise a way to measure Nafion's internal structure and, in the process, have discovered how to manipulate this structure to enhance the material's applications.

The research is published in the June 19 issue of Nature Materials in the Letters article, "Linear coupling of alignment with transport in a polymer electrolyte membrane," by Jing Li, Jong Keun Park, Robert B. Moore, and Louis A. Madsen, all with the chemistry department in the College of Science and the Macromolecules and Interfaces Institute at Virginia Tech.

Nafion is made up of molecules that combine the non-stick and tough nature of Teflon with the conductive properties of an acid, such as battery acid. A network of tiny channels, nanometers in size, carries water or ions quickly through the polymer. "But, due to the irregular structure of Nafion, scientists have not been able to get reliable information about its properties using most standard analysis tools, such as transmission electron microscopy," said Madsen, assistant professor of physical, polymer, and materials chemistry.

Madsen and Moore, professor of physical and polymer chemistry; Madsen's post-doctoral associate Jing Li; and Moore's Ph.D. student Jong Keun Park, of Korea, were able to use nuclear magnetic resonance (NMR)to measure molecular motion, and a combination of NMR and X-ray scattering to measure molecular alignment within Nafion. "We were looking at water molecules inside Nafion as internal reporters of structure and efficiency of conduction," said Madsen. "The new feature we discovered is the locally aligned aggregates of polymer molecules in the material. The molecules align like strands of dry spaghetti lined up in a box. We can measure the speed (diffusion) of the water molecules and the direction they travel within those structures, which relates strongly to the alignment of the polymer molecule strands."

The researchers observed that the alignment of the channels influenced the speed and preferential direction of water motion. And a startlingly clear picture presented itself when the scientists stretched the Nafion and measured its structure and water motion.

"Stretching drastically influences the degree of alignment," said Madsen. "So the molecules move faster along the direction of the stretch, and in a very predictable way. These materials actually share some properties with liquid crystals -- molecules that line up with each other and are used in every LCD television, projector, and screen."

These relationships have not been previously recognized in a polymer electrolyte, Madsen said.

The ability to observe motion and direction, and understand what is happening within Nafion, has implications for using the material in new ways, and for designing new materials, the researchers write in the Nature Materials article. Ion-based applications could include actuator devices such as artificial muscles, organic batteries, and more energy efficient fuel cells. A water-based application would be improved reverse osmosis membranes for water purification.

Madsen and Moore started this collaborative project shortly after they arrived at Virginia Tech (Madsen in 2006, Moore in 2007), and they are furthering their work together by investigating new polymeric materials using their unique combination of analysis techniques.

"Alignment provides for a better flow of the molecules through the polymer," Madsen said.

The research is supported by Madsen's National Science Foundation Faculty Early Career Development (CAREER) Award. His research focuses on improving advanced polymers for fuel cells and reverse-osmosis water purification by combining detailed analysis of these materials with theoretical understanding. The research is also supported by the US Army Research Office under Ionic Liquids in Electro-Active Devices (ILEAD) Multidisciplinary University Research Initiative (MURI) grant.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jing Li, Jong Keun Park, Robert B. Moore and Louis A. Madsen. Linear coupling of alignment with transport in a polymer electrolyte membrane. Nature Materials, June 19 2011 DOI: 10.1038/NMAT3048

Cite This Page:

Virginia Tech. "New insights on an old material will enable design of better polymer batteries, water purification." ScienceDaily. ScienceDaily, 20 June 2011. <www.sciencedaily.com/releases/2011/06/110619133512.htm>.
Virginia Tech. (2011, June 20). New insights on an old material will enable design of better polymer batteries, water purification. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2011/06/110619133512.htm
Virginia Tech. "New insights on an old material will enable design of better polymer batteries, water purification." ScienceDaily. www.sciencedaily.com/releases/2011/06/110619133512.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins