Featured Research

from universities, journals, and other organizations

Nearer to using methane as a raw material

Date:
June 20, 2011
Source:
Asociación RUVID
Summary:
Researchers have developed a methodology for transforming the simplest hydrocarbon, methane, into more complex organic molecules. The importance of the finding lies in the need to employ in the near future methane as a raw material in the chemical industry.

Researchers from the Universities of Valencia, Huelva and Toulousse have developed a methodology for transforming the simplest hydrocarbon, methane, into more complex organic molecules. The importance of the finding lies in the need to employ in the near future methane as a raw material in the chemical industry.

The use of methane, the simplest hydrocarbon and main component of natural gas, as a source for the production of more complex organic compounds is of great interest from both economic and environmental points of view. However, methane has the strongest C-H links in the whole series of alkanes and it rarely submits to the wishes of chemists.

The second challenge for chemically transforming methane derives from of its gaseous nature and its low solubility in common solvents. These features make it difficult for methane to come in contact with the catalysts and reagents that perform the chemical reaction and, therefore, this does not occur or it does but with great difficulty. For these reasons, very few processes are known to be effective for the functionalization of this hydrocarbon.

Researchers from the Universities of Valencia, Huelva and Toulouse, led by Professors Gregorio Asensio, Pedro J. Pérez and Michel Etienne, have solved the problem. The scientists have developed a methodology for transforming methane into more complex organic molecules. The reaction involves a silver catalyst specifically designed to activate the C-H methane bonds, a process that had already proved effective with heavier hydrocarbons. The challenge of attaining effective contact between the catalyst and the reagents needed for the transformation and methane was achieved by using carbon dioxide in supercritical state as the reaction medium.

Carbon dioxide is a gas under normal conditions, but at temperatures and pressures above their critical values ​​(32 oC and 74 atmospheres) it is a fluid similar to a liquid and capable of solubilizing the molecules involved in the reaction. These properties of supercritical carbon dioxide have found wide industrial applications such as, for instance, the decaffeination of coffee. In addition, the chemical inertness of carbon dioxide prevents it from reacting with the catalyst or the reactants involved in the conversion of methane, and therefore is an ideal solvent for these reactions.

The transformation involves a carbene insertion into a C-H methane bond catalyzed by silver complexes with halogenated scorpionate ligands in supercritical carbon dioxide. The described process establishes the feasibility of the insertion of carbenes into C-H methane bonds catalyzed by transition metals. The reaction leads to the creation of a C-C bond over the methane to give ethyl propanoate with a yield of 19% and opens new perspectives to the process of functionalization of methane and of hydrocarbons in general.

The results of this project were recently published in Science. The research was funded by the Spanish Ministry of Science and Innovation, the Regional Governments of Valencia and Andalusia, and the European Union through its ERA Chemistry programme.


Story Source:

The above story is based on materials provided by Asociación RUVID. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Caballero, E. Despagnet-Ayoub, M. Mar Diaz-Requejo, A. Diaz-Rodriguez, M. E. Gonzalez-Nunez, R. Mello, B. K. Munoz, W.-S. Ojo, G. Asensio, M. Etienne, P. J. Perez. Silver-Catalyzed C-C Bond Formation Between Methane and Ethyl Diazoacetate in Supercritical CO2. Science, 2011; 332 (6031): 835 DOI: 10.1126/science.1204131

Cite This Page:

Asociación RUVID. "Nearer to using methane as a raw material." ScienceDaily. ScienceDaily, 20 June 2011. <www.sciencedaily.com/releases/2011/06/110620094849.htm>.
Asociación RUVID. (2011, June 20). Nearer to using methane as a raw material. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2011/06/110620094849.htm
Asociación RUVID. "Nearer to using methane as a raw material." ScienceDaily. www.sciencedaily.com/releases/2011/06/110620094849.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins