Featured Research

from universities, journals, and other organizations

Researchers image graphene electron clouds, revealing how folds can harm conductivity

Date:
June 30, 2011
Source:
University at Buffalo
Summary:
Chemists have used synchrotron light sources to observe the electron clouds on the surface of graphene, producing a series of images that reveal how folds and ripples in the remarkable material can harm its conductivity.

Dotted lines show distinctive regions of graphene that are sloped at different angles. Soft X-rays paint a bird's-eye view of the electron cloud of graphene.
Credit: Brian J. Schultz, University at Buffalo

A research team led by University at Buffalo chemists has used synchrotron light sources to observe the electron clouds on the surface of graphene, producing a series of images that reveal how folds and ripples in the remarkable material can harm its conductivity.

Related Articles


The research, scheduled to appear June 28 in Nature Communications, was conducted by UB, the National Institute of Standards and Technology (NIST), the Molecular Foundry at Lawrence Berkeley National Laboratory (Berkeley Lab), and SEMATECH, a global consortium of semiconductor manufacturers.

Graphene, the thinnest and strongest material known to man, consists of a single layer of carbon atoms linked in a honeycomb-like arrangement.

Graphene's special structure makes it incredibly conductive: Under ideal circumstances, when graphene is completely flat, electric charges speed through it without encountering many obstacles, said Sarbajit Banerjee, one of the UB researchers who led the study in Nature Communications.

But conditions are not always optimal.

The new images that Banerjee and his colleagues captured show that when graphene is folded or bent, the electron cloud lining its surface also becomes warped, making it more difficult for an electric charge to travel through.

"When graphene is flat, things just kind of coast along the cloud. They don't have to hop across anything. It's like a superhighway," said Banerjee, an assistant professor of chemistry. "But if you bend it, now there are some obstacles; imagine the difference between a freshly paved highway and one with construction work along the length forcing lane changes.

"When we imaged the electron cloud, you can imagine this big fluffy pillow, and we saw that the pillow is bent here and there," said Banerjee, whose National Science Foundation CAREER award provided the primary funding for the project.

To create the images and understand the factors perturbing the electron cloud, Banerjee and his partners employed two techniques that required use of a synchrotron: scanning transmission X-ray microscopy and near edge X-ray absorption fine structure (NEXAFS), a type of absorption spectroscopy. The experiments were further supported by computer simulations performed on computing clusters at Berkeley Lab.

"Using simulations, we can better understand the measurements our colleagues made using X-rays, and better predict how subtle changes in the structure of graphene affect its electronic properties," said David Prendergast, a staff scientist in the Theory of Nanostructures Facility at the Molecular Foundry at Berkeley Lab. "We saw that regions of graphene were sloped at different angles, like looking down onto the slanted roofs of many houses packed close together."

Besides documenting how folds in graphene distort its electron cloud, the research team discovered that contaminants that cling to graphene during processing linger in valleys where the material is uneven. Such contaminants uniquely distort the electron cloud, changing the strength with which the cloud is bound to the underlying atoms.

Graphene's unusual properties have generated excitement in industries including computing, energy and defense. Scientists say that graphene's electrical conductivity matches that of copper, and that graphene's thermal conductivity is the best of any known material.

But the new, UB-led study suggests that companies hoping to incorporate graphene into products such as conductive inks, ultrafast transistors and solar panels could benefit from more basic research on the nanomaterial. Improved processes for transferring flat sheets of graphene onto commercial products could greatly increase those products' efficiency.

"A lot of people know how to grow graphene, but it's not well understood how to transfer it onto something without it folding onto itself," Banerjee said. "It's very hard to keep straight and flat, and our work is really bringing home the point of why that's so important."

"Graphene is going to be very important in electronics," said PhD candidate Brian Schultz, one of three UB graduate students who were lead authors on the Nature Communications paper. "It's going to be one of the most conductive materials ever found, and it has the capability to be used as an ultrahigh-frequency transistor or as a possible replacement for silicon chips, the backbone of current commercial electronics.

"When graphene was discovered, people were just so excited that it was such a good material that people really wanted to go with it and run as fast as possible," Schultz continued. "But what we're showing is that you really have to do some fundamental research before you understand how to process it and how to get it into electronics."

Other research partners offered the following insight into the significance of the findings:

  • Dan Fischer, NIST Material Measurement Laboratory, leader, Synchrotron Methods Group: "The NEXAFS results indicating that performance-damaging contaminants cling to graphene during processing highlights the importance of chemically sensitive advanced synchrotron measurement method developments for promoting innovation and industrial competiveness in commercial applications of nanotechnology."
  • Pat Lysaght, SEMATECH Front End Processes, senior member technical staff: "We place a premium on the power of collaboration, and this is a great example of the benefits associated with that philosophy. The unique expertise of each of the four collaborative entities has come together to forge a new understanding of subtle functionalization variations of surface graphene atoms. Our findings represent another important step toward potential industrial applications such as low-cost broadband radio frequency (RF) devices, and correlation of NEXAFS with Raman spectroscopy which may enhance monitoring capabilities for graphene as a replacement for large area organic LED displays."

Synchrotron imaging was conducted at the Canadian Light Source in Saskatchewan in Canada and at the National Synchrotron Light Source (NSLS ) at Brookhaven National Laboratory in New York State. NEXAFS was measured at the NIST soft X-ray beamline of the NSLS.


Story Source:

The above story is based on materials provided by University at Buffalo. Note: Materials may be edited for content and length.


Journal Reference:

  1. Brian J. Schultz, Christopher J. Patridge, Vincent Lee, Cherno Jaye, Patrick S. Lysaght, Casey Smith, Joel Barnett, Daniel A. Fischer, David Prendergast, Sarbajit Banerjee. Imaging local electronic corrugations and doped regions in graphene. Nature Communications, 2011; 2: 372 DOI: 10.1038/ncomms1376

Cite This Page:

University at Buffalo. "Researchers image graphene electron clouds, revealing how folds can harm conductivity." ScienceDaily. ScienceDaily, 30 June 2011. <www.sciencedaily.com/releases/2011/06/110628112312.htm>.
University at Buffalo. (2011, June 30). Researchers image graphene electron clouds, revealing how folds can harm conductivity. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2011/06/110628112312.htm
University at Buffalo. "Researchers image graphene electron clouds, revealing how folds can harm conductivity." ScienceDaily. www.sciencedaily.com/releases/2011/06/110628112312.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins