Featured Research

from universities, journals, and other organizations

X-rays reveal patterns in the plumage of the first birds

Date:
June 30, 2011
Source:
DOE/SLAC National Accelerator Laboratory
Summary:
Researchers report in Science Express that they have taken a big step in determining what the first birds looked like more than 100 million years ago, when their relatives, the dinosaurs, still ruled the Earth. At the Department of Energy's SLAC National Accelerator Laboratory, they discovered chemical traces of a pigment, an important component of color, that once formed patterns in the feathers of the fossilized birds.

Researchers report today in Science Express that they have taken a big step in determining what the first birds looked like more than 100 million years ago, when their relatives, the dinosaurs, still ruled the Earth. At the Department of Energy’s SLAC National Accelerator Laboratory, they discovered chemical traces of a pigment, an important component of color, that once formed patterns in the feathers of the fossilized birds. Pictured here is a synchrotron rapid scanning x-ray fluorescence image of the calcium distribution in a fossil specimen of Confuciusornis sanctus, an ~120 million year old avian species, the oldest documented to display a fully derived beak. Calcium is high in the bones as shown by the bright white areas, but calcium is also high in the areas corresponding to residue of downy feathers in the neck region. This is interpreted to be due to the distribution of calcium being controlled by eumelanin chelates in the neck feathers, indicating that these soft tissues were originally darkly pigmented.
Credit: Data were collected at SLAC's Stanford Synchrotron Radiation Lightsource, image created by Gregory Stewart (SLAC)

Scientists report that they have taken a big step in determining what the first birds looked like more than 100 million years ago, when their relatives, the dinosaurs, still ruled Earth. At the Department of Energy's SLAC National Accelerator Laboratory, they discovered chemical traces of a pigment, an important component of color, that once formed patterns in the feathers of the fossilized birds.

The pigment, eumelanin, is one of the coloring agents responsible for brown eyes and dark hair in many modern species, including humans. It would have been one of the factors that determined the birds' color patterns, along with structural properties of the birds' feathers and other pigments they ingested as part of their diets.

The discovery, reported June 30 in Science Express, will help give textbook illustrators, diorama makers and Hollywood special-effects artists a more realistic palette for their depictions of ancient animals. Understanding these pigment patterns is important for science, too, since they play a role in a wide range of behaviors that are important in evolution such as camouflage, communication and selecting mates.

"This is a pigment that evolved a very, very long time ago but is still actively synthesized by organisms on the planet, and we found a way to map it and show its presence over 120 million years of geological time passing," said geochemist Roy Wogelius of the University of Manchester, one of the leaders of an international team that reported the discovery. "It is a direct relationship between you, me, and some extremely old organisms."

Said report co-author Uwe Bergmann of SLAC, "If we could eventually give colors to long extinct species, that in itself would be fantastic. Synchrotron radiation has revolutionized science in many fields, most notably in molecular biology. It is very exciting to see that it is now starting to have an impact in paleontology, in a way that may have important implications in many other disciplines."

Working at SLAC's Stanford Synchrotron Radiation Lightsource, the researchers examined two fossilized birds. Confuciusornis sanctus, which lived 120 million years ago, was one of many evolutionary links between dinosaurs and birds, sporting the first known bird-like beak. Gansus yumenensis, considered the oldest modern bird, lived more than 100 million years ago and looked a bit like a modern grebe.

Scientists had previously found melanosomes -- the biological "paint pots" where melanin pigments are made and stored -- in both ancient and living organisms. They used information about the structures of the melanosomes to make an educated guess about the colors of the pigments inside. But the newly published research shows that this prior approach has limitations. The team looked instead for chemical traces of the pigments themselves with two sophisticated X-ray techniques developed at SSRL.

The first technique identifies specific chemicals or elements in a sample, and it can examine whole fossils rather than the tiny fragments used in previous methods, revealing pigment patterns across the whole specimen. With it, the researchers unveiled traces of specific elements in and around the tissues, bones and surrounding rock of Confuciusornis sanctus. These traces provide an image of the pigmentation patterns from this long-dead bird in eerie detail.

The most striking of these trace elements was copper. As Bergmann points out, copper, which can be toxic in high levels, has persisted in the fossil in significant amounts, appearing in the images as a ghostly glow in places where feathers remained. What was it doing there? Before they could answer that, the researchers had to determine what chemical form the copper took.

SSRL staff scientist Sam Webb used the second X-ray imaging technique to study the fossil of a single feather from Gansus yumenensis. His analysis revealed that the copper in the fossil took the same form as copper trapped by eumelanin pigment. What's more, Webb said, "When we looked outside the feather we didn't see the copper at all."

Couple that chemistry with the way the copper was distributed, and the research team was faced with a mind-boggling conclusion: They had seen actual color patterns in the fossil bird feathers. "There is a stunningly remarkable preservation of pigments," Wogelius said. The team found the same relationship between copper and pigments in samples from modern feathers and squid.

"These new techniques for teasing out evidence of pigmentation will take a lot of the guesswork out of reconstructing the appearance of extinct dinosaurs and birds," said renowned dinosaur illustrator James Gurney, author of the best-selling Dinotopia series.

The discovery opens a window on the biochemistry of ancient creatures, and could lead to a far greater understanding of what they ate and the chemistry of their surroundings.

"The fossils we excavate have vast potential to unlock many secrets about the original organism's life, death and subsequent events impacting its preservation," said paper co-author Phil Manning, a paleontologist at the University of Manchester. "In doing this, we unlock much more than just paleontological information. We now have a chemical roadmap to track similar pigments in all life."


Story Source:

The above story is based on materials provided by DOE/SLAC National Accelerator Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. A. Wogelius, P. L. Manning, H. E. Barden, N. P. Edwards, S. M. Webb, W. I. Sellers, K. G. Taylor, P. L. Larson, P. Dodson, H. You, L. Da-Qing, U. Bergmann. Trace Metals as Biomarkers for Eumelanin Pigment in the Fossil Record. Science, 2011; DOI: 10.1126/science.1205748

Cite This Page:

DOE/SLAC National Accelerator Laboratory. "X-rays reveal patterns in the plumage of the first birds." ScienceDaily. ScienceDaily, 30 June 2011. <www.sciencedaily.com/releases/2011/06/110630142839.htm>.
DOE/SLAC National Accelerator Laboratory. (2011, June 30). X-rays reveal patterns in the plumage of the first birds. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2011/06/110630142839.htm
DOE/SLAC National Accelerator Laboratory. "X-rays reveal patterns in the plumage of the first birds." ScienceDaily. www.sciencedaily.com/releases/2011/06/110630142839.htm (accessed July 26, 2014).

Share This




More Fossils & Ruins News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did ISIS Destroy Jonah's Tomb?

Did ISIS Destroy Jonah's Tomb?

Newsy (July 25, 2014) Unverified footage posted to YouTube purportedly shows ISIS militants destroying a shrine widely believed to be the tomb of the prophet Jonah. Video provided by Newsy
Powered by NewsLook.com
Richard III's Car Park Burial Site Opens to Public

Richard III's Car Park Burial Site Opens to Public

AFP (July 25, 2014) Visitors will be able to look down from a glass walkway on the grave of King Richard III when a new centre opens in the English cathedral city of Leicester, where the infamous hunchback was found under a car park in 2012. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
Mobile App Gives Tour of Battle of Atlanta Sites

Mobile App Gives Tour of Battle of Atlanta Sites

AP (July 25, 2014) Emory University's Center for Digital Scholarship has launched a self-guided mobile tour app to coincide with the 150th anniversary of the Civil War's Battle of Atlanta. (July 25) Video provided by AP
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins