Featured Research

from universities, journals, and other organizations

New means of overcoming antiviral resistance in influenza

Date:
July 13, 2011
Source:
University of California - Irvine
Summary:
Researchers have found a new approach to the creation of customized therapies for virulent flu strains that resist current antiviral drugs.

The 150- and 430-loop structures are shown for 09N1 crystal structure (purple), 09N1 second most dominant molecular dynamics (MD) cluster representative structure (green backbone) and VN04N1 crystal structure (orange), indicating that the pandemic N1 adopts an open 150-loop conformation. Gly147, Ile149, Lys150 and Pro431 are shown in stick representation. This simulation was conducted on SDSC's Trestles supercomputer.
Credit: R. Amaro/UCI, Ross Walker, UCSD/SDSC

Researchers from the University of California, Irvine, with assistance from the San Diego Supercomputer Center at UC San Diego, have found a new approach to the creation of customized therapies for virulent flu strains that resist current antiviral drugs.

Related Articles


The findings, published online this week in Nature Communications, could aid development of new drugs that exploit so-called flu protein 'pockets.'

Using powerful computer simulations on SDSC's new Trestles system, launched earlier this year under a $2.8 million National Science Foundation (NSF) award, UCI's Rommie Amaro and Robin Bush together with SDSC's Ross Walkercreated a method to predict how pocket structures on the surface of influenza proteins promoting viral replication can be identified as these proteins evolve, allowing for possible pharmaceutical exploitation.

"Our results can influence the development of new drugs taking advantage of this unique feature," said Amaro, an assistant professor of pharmaceutical sciences and computer science at UCI. Prior to joining UCI in 2009, Amaro was a postdoctoral fellow in chemistry at UC San Diego.

The search for effective flu drugs has always been hampered by the influenza virus itself, which mutates from strain to strain, making it difficult to target with a specific pharmaceutical approach. The most common clinical flu treatments are broad-based and only partially effective. They work by interrupting the action of an enzyme in the virus called neuraminidase, which plays a critical role in viral replication.

In 2006, scientists discovered that avian influenza neuraminidase (N1) exhibited a distinctive, pocket-shaped feature in the area pinpointed by clinically used drugs. They named it the 150-cavity.

Amaro and Bush, associate professor of ecology and evolutionary biology, conducted research using resources at the San Diego Supercomputer Center, as well as the National Institute for Computational Sciences (NICS) to learn the conditions under which the pockets form. They created molecular simulations of flu proteins to predict how these dynamic structures move and change, as well as and where and when the 150-cavity pockets will appear on the protein surface.

This sequence analysis method could be utilized on evolving flu strains, providing vital information for drug design, Amaro said. "Having additional antivirals in our treatment arsenal would be advantageous and potentially critical if a highly virulent strain, for example, H5N1, evolved to undergo rapid transmission among humans or if the already highly transmissible H1N1 pandemic virus was to develop resistance to existing antiviral drugs," she added.

Walker, an assistant research professor who runs the Walker Molecular Dynamics Lab at SDSC, developed a customized version of the AMBER software, a widely used package of molecular simulation codes, to run these specific simulations on Trestles under the NSF's TeraGrid Advanced User Support System. That included detailed performance tuning including hard-coding atom counts, atom types and parameters, and being able to use Trestles for uninterrupted two-week runs that together consumed more than one million SUs (single processor hours).

"We initially used the Athena supercomputer at NICS, which provided us with all the initial comparison data before Trestles came online earlier this year," said Walker, who is also an adjunct assistant professor in UC San Diego's Department of Chemistry and Biochemistry. "We had Trestles all ready to go as soon as the first H1N1 protein structure was available, and using the earlier work we did on Athena, we were able to put Trestles immediately to work to conduct simulations of the structure as part of this research."

Robert Swift and Lane Votapka of UCI, as well as Wilfred Li of UC San Diego, also contributed to the study, which received support from the National Institutes of Health and the NSF.


Story Source:

The above story is based on materials provided by University of California - Irvine. The original article was written by Jan Zverina. Note: Materials may be edited for content and length.


Journal Reference:

  1. Rommie E. Amaro, Robert V. Swift, Lane Votapka, Wilfred W. Li, Ross C. Walker, Robin M. Bush. Mechanism of 150-cavity formation in influenza neuraminidase. Nature Communications, 2011; 2: 388 DOI: 10.1038/ncomms1390

Cite This Page:

University of California - Irvine. "New means of overcoming antiviral resistance in influenza." ScienceDaily. ScienceDaily, 13 July 2011. <www.sciencedaily.com/releases/2011/07/110712122409.htm>.
University of California - Irvine. (2011, July 13). New means of overcoming antiviral resistance in influenza. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2011/07/110712122409.htm
University of California - Irvine. "New means of overcoming antiviral resistance in influenza." ScienceDaily. www.sciencedaily.com/releases/2011/07/110712122409.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins