Featured Research

from universities, journals, and other organizations

DNA cages 'can survive inside living cells'

Date:
August 25, 2011
Source:
University of Oxford
Summary:
Scientists have shown for the first time that molecular cages made from DNA can enter and survive inside living cells.

Human embryonic kidney cells were used to test the DNA cages.
Credit: Image courtesy of University of Oxford

Scientists at Oxford University have shown for the first time that molecular cages made from DNA can enter and survive inside living cells.

Related Articles


The work, a collaboration between physicists and molecular neuroscientists at Oxford, shows that artificial DNA cages that could be used to carry cargoes of drugs can enter living cells, potentially leading to new methods of drug delivery.

A report of the research is published online in the journal ACS Nano.

The cages developed by the researchers are made from four short strands of synthetic DNA. These strands are designed so that they naturally assemble themselves into a tetrahedron (a pyramid with four triangular faces) around 7 nanometres tall.

The Oxford researchers have previously shown that it is possible to assemble these cages around protein molecules, so that the protein is trapped inside, and that DNA cages can be programmed to open when they encounter specific 'trigger' molecules that are found inside cells.

In the new experiment they introduced fluorescently-labelled DNA tetrahedrons into human kidney cells grown in the laboratory. They then examined the cells under the microscope and found that the cages remained substantially intact, surviving attack by cellular enzymes, for at least 48 hours. This is a crucial advance: to be useful as a drug delivery vehicle, a DNA cage must enter cells efficiently and survive until it can release its cargo where and when it is needed.

'At the moment we are only testing our ability to create and control cages made of DNA,' said Professor Andrew Turberfield of Oxford University's Department of Physics, who led the work. 'However, these results are an important first step towards proving that DNA cages could be used to deliver cargoes, such as drugs, inside living cells.'

Professor Turberfield said: 'Previous studies have shown that the size of particles is an important factor in whether or not they can easily enter cells, with particles with a radius less than 50 nanometres proving much more successful at gaining entry than larger particles. At 7 nanometres across our DNA tetrahedrons are compact enough to easily enter cells but still large enough to carry a useful cargo. More work is now needed to understand exactly how these DNA cages manage to find their way inside living cells.'


Story Source:

The above story is based on materials provided by University of Oxford. Note: Materials may be edited for content and length.


Journal Reference:

  1. Anthony S. Walsh, HaiFang Yin, Christoph M. Erben, Matthew J. A. Wood, Andrew J. Turberfield. DNA Cage Delivery to Mammalian Cells. ACS Nano, 2011; 110628154938010 DOI: 10.1021/nn2005574

Cite This Page:

University of Oxford. "DNA cages 'can survive inside living cells'." ScienceDaily. ScienceDaily, 25 August 2011. <www.sciencedaily.com/releases/2011/07/110714100319.htm>.
University of Oxford. (2011, August 25). DNA cages 'can survive inside living cells'. ScienceDaily. Retrieved February 1, 2015 from www.sciencedaily.com/releases/2011/07/110714100319.htm
University of Oxford. "DNA cages 'can survive inside living cells'." ScienceDaily. www.sciencedaily.com/releases/2011/07/110714100319.htm (accessed February 1, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, February 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Dog-Loving Astronaut Wins Best Photo of 2015

Dog-Loving Astronaut Wins Best Photo of 2015

Buzz60 (Jan. 30, 2015) Retired astronaut and television host, Leland Melvin, snuck his dogs into the NASA studio so they could be in his official photo. As Mara Montalbano (@maramontalbano) shows us, the secret is out. Video provided by Buzz60
Powered by NewsLook.com
U.S. Wants to Analyze DNA from 1 Million People

U.S. Wants to Analyze DNA from 1 Million People

Reuters - US Online Video (Jan. 30, 2015) The U.S. has proposed analyzing genetic information from more than 1 million American volunteers to learn how genetic variants affect health and disease. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Rarest Cat on Planet Caught Attacking Monkeys on Camera

Rarest Cat on Planet Caught Attacking Monkeys on Camera

Buzz60 (Jan. 30, 2015) An African Golden Cat, the rarest large cat on the planet was recently caught on camera by scientists trying to study monkeys. The cat comes out of nowhere to attack those monkeys. Patrick Jones (@Patrick_E_Jones) has the rest. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins