Featured Research

from universities, journals, and other organizations

Graphene gives up more of its secrets

July 18, 2011
DOE/Lawrence Berkeley National Laboratory
Scientists have used the Advanced Light Source to investigate theories about the electronic structure of graphene never before tested by experiment. They find that near the neutral point of undoped graphene, graphene's semimetallic behavior includes very long-range interactions among electrons and other unusual properties, confirming that graphene is every bit as strange as expected -- perhaps even more so.

Undoped graphene isn't a metal, semiconductor, or insulator but a semimetal, whose unusual properties include electron-electron interactions between particles widely separated on graphene's honeycomb lattice - here suggested by an artist's impression of Feynman diagrams of such interactions. Long-range interactions, unlike those that occur only over very short distances in ordinary metals, alter the fundamental character of charge carriers in graphene.
Credit: Image by Caitlin Youngquist, Berkeley Lab Public Affairs

Graphene, a sheet of carbon only a single atom thick, was an object of theoretical speculation long before it was actually made. Theory predicts extraordinary properties for graphene, but testing the predictions against experimental results is often challenging.

Now researchers using the Advanced Light Source (ALS) at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have taken an important step toward confirming that graphene is every bit as unusual as expected -- perhaps even more so.

"Graphene is not a semiconductor, not an insulator, and not a metal," says David Siegel, the lead author of a paper in the Proceedings of the National Academy of Sciences (PNAS) reporting the research team's results. "It's a special kind of semimetal, with electronic properties that are even more interesting than one might suspect at first glance."

Siegel is a graduate student in Berkeley Lab's Materials Sciences Division (MSD) and a member of Alessandra Lanzara's group in the Department of Physics at the University of California at Berkeley. He and his colleagues used ALS beamline 12.0.1 to probe a specially prepared sample of graphene with ARPES (angle-resolved photoemission spectroscopy) in order to observe how undoped graphene -- the intrinsic material with no extra charge carriers -- behaves near the so-called "Dirac point."

The Dirac point is a unique feature of graphene's band structure. Unlike the band structure of semiconductors, for example, graphene has no band gap -- no gap in energy between the electron-filled valence band and the unoccupied conduction band. In graphene these bands are represented by two cones ("Dirac cones") whose points touch, crossing linearly at the Dirac point. When the valence band of graphene is completely filled and the conduction band is completely empty, the graphene can be considered "undoped" or "charge neutral," and it is here that some of the interesting properties of graphene may be observed.

An ARPES experiment neatly measures a slice through the cones by directly plotting the kinetic energy and angle of electrons that fly out of the graphene sample when they are excited by an x‑ray beam from the ALS. A spectrum develops as these emitted electrons hit the detector screen, gradually building up a picture of the cone.

The way the electrons interact in undoped graphene is markedly different from that of a metal: the sides of the cone (or legs of the X, in an ARPES spectrum) develop a distinct inward curvature, indicating that electronic interactions are occurring at increasingly longer range -- distances of up to 790 angstroms apart -- and lead to greater electron velocities. These are unusual manifestations, never seen before, of a widespread phenomenon called "renormalization."

Experiment versus theory

To understand the significance of the team's findings, it helps to start with their experimental set-up. Ideally, measurements of undoped graphene would be done with a suspended sheet of freestanding graphene. But many experiments can't be done unless the target is resting on a solid substrate, which can influence the electronic properties of the layer on the surface and interfere with the experiment.

So Siegel and his colleagues decided to investigate a special kind of "quasi-freestanding" graphene, starting with a substrate of silicon carbide. When heated, the silicon is driven out of the silicon carbide and carbon gathers on the surface as a relatively thick layer of graphite (the kind of carbon in pencil lead). But adjacent layers of graphene in the thick graphite sample are rotated with respect to one another, so that each layer in the stack behaves like a single isolated layer.

"In solid-state physics one of the most fundamental questions one can ask about a material is the nature of its charge carriers," Siegel says. "For ordinary metals, the answer can be described by the most powerful theory of solids, known as Landau's Fermi-liquid theory," after the Soviet physicist Lev Landau and the Italian and naturalized-American physicist Enrico Fermi.

While individual electrons carry charge -- the electric current in a copper wire, for example -- even in a metal they can't fully be understood as simple, independent particles. Because they are constantly interacting with other particles, the effects of the interactions have to be included; electrons and interactions together can be thought of as "quasiparticles," which behave much like free electrons but with different masses and velocities. These differences are derived through the mathematical process called renormalization.

Landau's Fermi liquid is made up of quasiparticles. Besides describing features of electrons plus interactions, Fermi liquids have a number of other characteristic properties, and in most materials the theory takes generally the same form. It holds that charge carriers are "dressed" by many-body interactions, which also serve to screen electrons and prevent or reduce their longer-distance interactions.

"Since the properties of so many materials are pretty much the same in a generalized way, physicists are always interested in finding systems that differ from a normal Fermi liquid," says Siegel. "This is what makes our results so exciting. Undoped graphene really does differ from what we expect for a normal Fermi liquid, and our results are in good agreement with theoretical calculations."

Perhaps the most vivid example of the difference is the long-range interaction among electrons in semimetallic graphene, interactions which would be screened in a normal metal. Siegel grants that there may be continuing controversy about how exactly graphene should be expected to behave, "but our main result is that we have confirmed the presence of these unscreened, long-range interactions, which change the behavior of quasiparticles in graphene in a fundamental way."


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.

Journal Reference:

  1. D. A. Siegel, C.-H. Park, C. Hwang, J. Deslippe, A. V. Fedorov, S. G. Louie, A. Lanzara. Many-body interactions in quasi-freestanding graphene. Proceedings of the National Academy of Sciences, 2011; 108 (28): 11365 DOI: 10.1073/pnas.1100242108

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Graphene gives up more of its secrets." ScienceDaily. ScienceDaily, 18 July 2011. <www.sciencedaily.com/releases/2011/07/110715135551.htm>.
DOE/Lawrence Berkeley National Laboratory. (2011, July 18). Graphene gives up more of its secrets. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2011/07/110715135551.htm
DOE/Lawrence Berkeley National Laboratory. "Graphene gives up more of its secrets." ScienceDaily. www.sciencedaily.com/releases/2011/07/110715135551.htm (accessed August 1, 2014).

Share This

More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins