Featured Research

from universities, journals, and other organizations

It's simple: Increasing complexity of models does not necessarily increase their accuracy

Date:
July 20, 2011
Source:
BioMed Central
Summary:
Mathematical modeling of infectious diseases is an important tool in the understanding and prediction of epidemics. Knowledge of social interactions is used to understand how infectious diseases spread through populations and how to control epidemics. New research shows that a model, which included dynamic information about the heterogeneity of contact length and rate of making new contacts, was as effective as a more complex model which included the order of contacts.

Mathematical modeling of infectious diseases is an important tool in the understanding and prediction of epidemics. Knowledge of social interactions is used to understand how infectious diseases spread through populations and how to control epidemics. New research published in BMC Medicine shows that a model, which included dynamic information about the heterogeneity of contact length and rate of making new contacts, was as effective as a more complex model which included the order of contacts.

Data was collected over a two-day period, within the Socio Patterns project, which brings together researchers from Turin (Italy), Marseilles and Lyon (France). 405 people attending the 2009 Annual French Conference on Nosocomial Infections volunteered to wear radiofrequency identification device (RFID) which recorded face to face contacts (within a distance of 1-2m). Each day researchers recorded the number and duration of meetings between participants. Nearly 30,000 social contacts were recorded over the two days of the conference allowing dynamic networks to be constructed.

Three aggregations of this data set were used in a SEIR (Susceptible, Exposed, Infectious, Recovered) model of infection. The first (DYN) utilized dynamic and time-order specific data, the second (HET) retained heterogeneity of contacts but not the order of interactions, and the third (HOM) assumed that all interactions were random, homogeneous, and of the same length.

While it might be assumed that knowing the precise order of social contacts may help refine the model, the results from the first two scenarios, DYN and HET, were very similar producing a comparable number of infected individuals and taking the same time to reach peak infection. However, without enough data, the simplest scenario, HOM, estimated a larger number of infected people and therefore a more severe epidemic.

Dr Juliette Stehl้ from Universit้ de Marseilles concluded, "Adding real life data about the movement of people within social situations is important in refining computational models of how disease is spread. Our results have important implications for understanding the level of detail required needed to produce functional models and better models lead in turn to better anticipation, prevention, and management of emerging infection and epidemics."


Story Source:

The above story is based on materials provided by BioMed Central. Note: Materials may be edited for content and length.


Journal References:

  1. Juliette Stehle, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Vittoria Colizza, Lorenzo Isella, Corinne R้gis, Jean-Francois Pinton, Nagham Khanafer, Wouter Van den Broeck and Philippe Vanhems. Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Medicine, 2011; (in press) [link]
  2. Sally Blower and Myong-Hyun Go. The importance of including dynamic social networks when modeling epidemics of airborne infections: does increasing complexity increase accuracy? BMC Medicine, 2011; (in press) [link]

Cite This Page:

BioMed Central. "It's simple: Increasing complexity of models does not necessarily increase their accuracy." ScienceDaily. ScienceDaily, 20 July 2011. <www.sciencedaily.com/releases/2011/07/110718201514.htm>.
BioMed Central. (2011, July 20). It's simple: Increasing complexity of models does not necessarily increase their accuracy. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2011/07/110718201514.htm
BioMed Central. "It's simple: Increasing complexity of models does not necessarily increase their accuracy." ScienceDaily. www.sciencedaily.com/releases/2011/07/110718201514.htm (accessed July 23, 2014).

Share This




More Computers & Math News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Plans To Speed Up Web Pages With New Image Format

Google Plans To Speed Up Web Pages With New Image Format

Newsy (July 21, 2014) — Google is using compressed images in WebP format to help boost page loading times. The files are 25-to-34 percent smaller than PNGs and JPEGs. Video provided by Newsy
Powered by NewsLook.com
Uruguayan Creates Chess Game for Multiple Opponents

Uruguayan Creates Chess Game for Multiple Opponents

AFP (July 19, 2014) — It no longer takes two to play chess – or at least according to a new version of the game invented by Uruguayan Gabriel Baldi, where up to four opponents can play. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Clock Ticks Down on Internet Speed Debate

Clock Ticks Down on Internet Speed Debate

Reuters - US Online Video (July 18, 2014) — The FCC received more than 800,000 comments on whether and how internet speeds should be regulated, even crashing its system. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Google Won't Call Games With In-App Add-Ons Free, Apple Will

Google Won't Call Games With In-App Add-Ons Free, Apple Will

Newsy (July 18, 2014) — The European Commission asked Google and Apple not to label apps "free" if they include in-app purchases. Google has complied; Apple has resisted. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins