Featured Research

from universities, journals, and other organizations

Cosmological evolution of dark matter is similar to that of visible matter

Date:
August 17, 2011
Source:
University of Faculty of Physics Warsaw
Summary:
Large cosmic structures made up of dark and normal matter evolve along the same lines -- this is one of the most important conclusions emerging from the latest computer simulations.

Visualization of DM distribution 800 millions years after the Big Bang.
Credit: The Marenostrum Numerical Cosmology Project

Large cosmic structures made up of dark and normal matter evolve along the same lines -- this is one of the most important conclusions emerging from the latest computer simulations. The performed calculations mark the culmination of many years of work by a Polish, German and Russian team of astrophysicists and cosmologists.

High-resolution computer simulations prepared by a team of scientists from the Faculty of Physics, University of Warsaw (FUW), the Lebedev Physical Institute of the Russian Academy of Sciences and the Institute for Astrophysics in Potsdam made it possible to trace the evolution of large clouds of dark and normal matter that fill the Universe. The results confirm earlier assumptions regarding the basic features of dark matter, especially its distribution on cosmological scales.

For several decades, astronomers have been struggling to explain the motion of stars in galaxies and of galaxies in galaxy clusters. Measurements show that a typical galaxy must contain 10 to 50 times more invisible matter than normal one, and galaxy clusters must contain even up to 100 to 500 times more of the former. "It turns out that normal matter, which makes up our everyday world, is but a slight addition to dark matter. There is at least six times more of the latter in the Universe -- and nobody knows what it is. Discovering its nature is a thrilling experience," says Prof. Marek Demiański from the Faculty of Physics, University of Warsaw (FUW).

Currently, it is assumed that dark matter consists of exotic particles, not yet known to science, which barely, if at all, interact with electromagnetic radiation and other elementary particles known today. Scientists can observe dark matter only indirectly, by investigating the impact of its gravity on the motion of normal matter.

Given the significant amount of dark matter, it must have played a fundamental role in the formation of galaxies and their clusters. Scientists are, therefore, interested in the way in which dark matter is distributed across the Universe and in which the structures made up of it evolved over time. In order to answer these questions, one would need to observe galaxy clusters, the light of which travelled to Earth ten or more billion years. Yet such distant object are difficult to detect. As a result, the amount of observational data is insufficient to allow for a statistical analysis.

Computer simulations prove useful in research into dark matter. They make it possible to observe the process of clustering of dark matter on large scales and its impact on the distribution of normal matter. By comparing the results obtained in this way with observational data, it is possible to assess the extent to which the scientists' assumptions regarding the properties of dark matter coincide with the reality.

In the early periods after the Big Bang both dark and normal matter were more or less equally distributed. In contrast to normal one, dark matter does not interact with electromagnetic radiation, which filled the Universe shortly after the Big Bang and thus could succumb more quickly to the impact of its own gravity. Slight distortions in the distribution of dark matter began to contract gravitationally, attracting dark matter, and in later periods also normal one. The simulations by Polish, German and Russian group of scientists mirror the process.

During the simulations the scientists analyzed the behaviour of about a billion point objects distributed in a cube with side length of several hundred million light years. As time went on, the original cube was expanded along with the "ballooning" Universe. About a billion points were evenly distributed in the cube -- the limitation on their number being the computing power of today's computers. Each point in the simulation had a mass of hundred million times the mass of the Sun. Characteristics of dark matter were assigned to most of the points. Subsequently, the scientists analyzed the way in which the distribution of the points was changing over time under the influence of gravity.

One of the most important conclusions emerging from the performed simulations is the confirmation of the self-similarity of the process of evolution of the structure of dark and normal matter on large cosmic scales. Which means that if we examine a cube four billion years after the Big Bang and later compare it with a ten-billion-year-old cube, then, after matching the dimensions of both cubes, it turns out that the structures inside them made up of dark and normal matter look virtually the same.

"This similarity between the processes of evolution of both types of matter makes it possible to recreate the distribution of dark matter on the basis of the distribution of normal matter. Our simulations have confirmed this effect and we can now say with greater certainty that we are able to gain insight into the invisible world of dark matter by observing the motion of galaxy clusters," concludes Prof. Demiański.

The results of the computer simulations of the distribution of dark and normal matter were published in the Monthly Notices of the Royal Astronomical Society and presented on the international conference JENAM 2011 European Week of Astronomy and Space Science on July 4-8 in Saint Petersburg, Russia.


Story Source:

The above story is based on materials provided by University of Faculty of Physics Warsaw. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Demiański, A. Doroshkevich, S. Pilipenko, S. Gottlφber. Simulated evolution of the dark matter large-scale structure of the Universe. Monthly Notices of the Royal Astronomical Society, 2011; 414 (3): 1813 DOI: 10.1111/j.1365-2966.2011.18265.x

Cite This Page:

University of Faculty of Physics Warsaw. "Cosmological evolution of dark matter is similar to that of visible matter." ScienceDaily. ScienceDaily, 17 August 2011. <www.sciencedaily.com/releases/2011/07/110721102021.htm>.
University of Faculty of Physics Warsaw. (2011, August 17). Cosmological evolution of dark matter is similar to that of visible matter. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2011/07/110721102021.htm
University of Faculty of Physics Warsaw. "Cosmological evolution of dark matter is similar to that of visible matter." ScienceDaily. www.sciencedaily.com/releases/2011/07/110721102021.htm (accessed October 21, 2014).

Share This



More Space & Time News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com
Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) — Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) — Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com
Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Newsy (Oct. 17, 2014) — The smallest of Saturn's main moons, Mimas, wobbles as it orbits. Research reveals it might be due to a global ocean underneath its icy surface. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins