Featured Research

from universities, journals, and other organizations

Link between competing phases in cuprates leads to new theory; Discovery in parent of one high-temperature superconductor may lead to predictive control

Date:
July 21, 2011
Source:
DOE/Brookhaven National Laboratory
Summary:
A team of scientists studying the parent compound of a cuprate (copper-oxide) superconductor has discovered a link between two different states, or phases, of that matter -- and written a mathematical theory to describe the relationship. This work will help scientists predict the material's behavior under varying conditions, and may help explain how it's transformed into a superconductor able to carry current with no energy loss.

This graphic shows a distortion in the “stripey” electronic structure of a copper-oxide material (represented by the fork in the top illustration), and how that distortion rotates around a central defect (as illustrated by the color pinwheel below). After discovering the existence of this long sought ‘topological’ defect in the electronic structure, the researchers found that its rotation is also linked to the intensity of a competing electronic phase (indicated by peaks and depressions in the lower illustration). This provided a key clue to the correct mathematical theory explaining the link between the two phases. The scientists hope this theory will lead to predictive control of these electronic phases — and eventually to an understanding of their impact on superconductivity.
Credit: Image courtesy of DOE/Brookhaven National Laboratory

A team of scientists studying the parent compound of a cuprate (copper-oxide) superconductor has discovered a link between two different states, or phases, of that matter -- and written a mathematical theory to describe the relationship. This work, appearing in the July 22, 2011, issue of Science, will help scientists predict the material's behavior under varying conditions, and may help explain how it's transformed into a superconductor able to carry current with no energy loss.

"The ultimate goal is to use what we learn to design copper-oxide materials with desired properties -- such as superconductors that operate at temperatures warm enough to allow more widespread use in applications designed to transform the distribution of electricity," said J.C. Séamus Davis, a co-author on the paper. Davis is Director of the Center for Emergent Superconductivity at the U.S. Department of Energy's Brookhaven National Laboratory and the J.D. White Distinguished Professor of Physical Sciences at Cornell University.

"If you want to understand how to use a material, you need a theoretical understanding of how it behaves under different conditions," Davis said. For example, there would be no desktop computers if we didn't first have a theory to explain the behavior of silicon, the main component of the computer's memory and processing chips. "To attain that kind of control over cuprate superconductors -- materials that have enormous potential for improving energy efficiency and storage -- we need that quantitative and predictive understanding."

One challenge is that copper-oxide superconductors have lots of other states that can compete with superconductivity. To begin to understand these different phases -- which are dominant, which are weaker, how they interact, and what happens to alter the balance of "power" -- the experimentalists* on the team used a technique called spectroscopic image-scanning tunneling microscopy, developed by Davis, to directly visualize the electrons in each phase at the atomic level.

"With this technique, we can look for how the competition between two forms of matter works by direct observation," Davis said.

One state has a periodic modulation of the electronic structure, like a wave with periodic peaks and valleys that impart a "stripe" pattern over the entire crystalline structure of the material. The other state has variations within every unit cell of the same crystal -- that is, variations in a property of each individual electron.

Davis' technique was able to detect "topological defects" -- swirling vortex-like distortions in the stripey component of the electronic structure -- that provide a link from one of these ordered phases to the other.

These topological defects are similar to those observed in liquid crystal states, which led theoretical physicists in the group -- Eun-Ah Kim of Cornell, Michael Lawler of Binghamton University, Subir Sachdev of Harvard University, and Jan Zaanen of Leiden University -- to devise a theory that draws on experience with those materials. This new theory explains the coexistence of the two cuprate states, and predicts their interplay at the atomic scale.

The theory should help predict the behavior of the material at the macroscopic scale -- how it behaves in the real world -- and how that behavior varies as a function of material-specific conditions, such as crystal symmetry.

"We don't know yet how this will relate to the mechanism of high-temperature superconductivity, Davis said, "but we aspire to answer that question."

This research was supported by the DOE Office of Science (through the Center for Emergent Superconductivity, an Energy Frontier Research Center), the National Science Foundation, the Japanese Ministry of Science and Education, the Japan Society for the Promotion of Science, and the Netherlands Organization for Scientific Research.

*Additional collaborators: Andrej Mesaros (Leiden University and Cornell); K Fujita (Cornell, Brookhaven, and University of Tokyo); Hiroshi Eisaki (Institute of Advanced Industrial Science and Technology, Japan); S Uchida (University of Tokyo).


Story Source:

The above story is based on materials provided by DOE/Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Mesaros, K. Fujita, H. Eisaki, S. Uchida, J. C. Davis, S. Sachdev, J. Zaanen, M. J. Lawler, Eun-Ah Kim. Topological Defects Coupling Smectic Modulations to Intra–Unit-Cell Nematicity in Cuprates. Science, 2011; 333 (6041): 426-430 DOI: 10.1126/science.1201082

Cite This Page:

DOE/Brookhaven National Laboratory. "Link between competing phases in cuprates leads to new theory; Discovery in parent of one high-temperature superconductor may lead to predictive control." ScienceDaily. ScienceDaily, 21 July 2011. <www.sciencedaily.com/releases/2011/07/110721142406.htm>.
DOE/Brookhaven National Laboratory. (2011, July 21). Link between competing phases in cuprates leads to new theory; Discovery in parent of one high-temperature superconductor may lead to predictive control. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2011/07/110721142406.htm
DOE/Brookhaven National Laboratory. "Link between competing phases in cuprates leads to new theory; Discovery in parent of one high-temperature superconductor may lead to predictive control." ScienceDaily. www.sciencedaily.com/releases/2011/07/110721142406.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) — The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) — The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) — President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) — Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins