Featured Research

from universities, journals, and other organizations

Engineers develop one-way transmission system for sound waves

Date:
August 3, 2011
Source:
California Institute of Technology
Summary:
While many hotel rooms, recording studios, and even some homes are built with materials to help absorb or reflect sound, mechanisms to truly control the direction of sound waves are still in their infancy. However, researchers have now created the first tunable acoustic diode -- a device that allows acoustic information to travel only in one direction, at controllable frequencies.

The nonlinearity and asymmetry present in this chain of compressed spheres can transform vibrations of one frequency, applied at one end of the chain, to vibrations with broadband frequency content leading to rectification. The amplitude of the vibrations are shown by the height of the peaks.
Credit: Chiara Daraio / Caltech

While many hotel rooms, recording studios, and even some homes are built with materials to help absorb or reflect sound, mechanisms to truly control the direction of sound waves are still in their infancy. However, researchers at the California Institute of Technology (Caltech) have now created the first tunable acoustic diode-a device that allows acoustic information to travel only in one direction, at controllable frequencies.

The mechanism they developed is outlined in a paper published on July 24 in the journal Nature Materials.

Borrowing a concept from electronics, the acoustic diode is a component that allows a current -- in this case a sound wave -- to pass in one direction, while blocking the current in the opposite direction. "We exploited a physical mechanism that causes a sharp transition between transmitting and nontransmitting states of the diode," says Chiara Daraio, professor of aeronautics and applied physics at Caltech and lead author on the study. "Using experiments, simulations, and analytical predictions, we demonstrated the one-way transmission of sound in an audible frequency range for the first time."

This new mechanism brings the idea of true soundproofing closer to reality. Imagine two rooms labeled room A and room B. This new technology, Daraio explains, would enable someone in room A to hear sound coming from room B; however, it would block the same sound in room A from being heard in room B.

"The concept of the one-way transmission of sound could be quite important in architectural acoustics, or the science and engineering of sound control within buildings," says Georgios Theocharis, a postdoctoral scholar in Daraio's laboratory and a co-author of the study.

The system is based on a simple assembly of elastic spheres -- granular crystals that transmit the sound vibrations -- that could be easily used in multiple settings, can be tuned easily, and can potentially be scaled to operate within a wide range of frequencies, meaning its application could reach far beyond soundproofing.

Similar systems have been demonstrated by other scientists, but they all feature smooth transitions between transmitting and nontransmitting states instead of the sharp transitions needed to be more effective at controlling the flow of sound waves. To obtain the sharp transition, the team created a periodic system with a small defect that supports this kind of quick change from an "on" to an "off" transmission state. According to Daraio, this means the system is very sensitive to small variations of operational conditions, like pressure and movement, making it useful in the development of ultrasensitive acoustic sensors to detect sound waves. The system can also operate at different frequencies of sound and is capable of downshifting, or reducing the frequency of the traveling signals, as needed.

"We propose to use these effects to improve energy-harvesting technologies," she says. "For example, we may be able to scavenge sound energy from undesired structural vibrations in machinery by controlling the flow of sound waves away from the machinery and into a transducer. The transducer would then convert the sound waves into electricity." Daraio says the technology can also shift the undesired frequencies to a range that enables a more efficient conversion to electricity.

The team plans to continue studying the fundamental properties of these systems, focusing on their potential application to energy-harvesting systems. They also believe that these systems may be applicable to a range of technologies including biomedical ultrasound devices, advanced noise control, and even thermal materials aimed at temperature control.

"Because the concepts governing wave propagation are universal to many systems, we envision that the use of this novel way to control energy might enable the design of many advanced thermal and acoustic materials and devices," says Daraio.

The research was supported by the National Science Foundation, the Office of Naval Research, and the A. S. Onassis Benefit Foundation.


Story Source:

The above story is based on materials provided by California Institute of Technology. The original article was written by Katie Neith. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. Boechler, G. Theocharis, C. Daraio. Bifurcation-based acoustic switching and rectification. Nature Materials, 2011; DOI: 10.1038/nmat3072

Cite This Page:

California Institute of Technology. "Engineers develop one-way transmission system for sound waves." ScienceDaily. ScienceDaily, 3 August 2011. <www.sciencedaily.com/releases/2011/07/110726132404.htm>.
California Institute of Technology. (2011, August 3). Engineers develop one-way transmission system for sound waves. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2011/07/110726132404.htm
California Institute of Technology. "Engineers develop one-way transmission system for sound waves." ScienceDaily. www.sciencedaily.com/releases/2011/07/110726132404.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins