Featured Research

from universities, journals, and other organizations

A cellular protein can reduce the growth and spread of cancer cells

Date:
August 1, 2011
Source:
Lawson Health Research Institute
Summary:
Researchers have found new hope for cancer survival. Their findings show that maspin, a cellular protein, can reduce the growth and spread of cancer cells from 75 percent-40 percent when localized in the nucleus. These findings show the location of maspin within the cell significantly influences cancer cells' behavior, determining how aggressive the disease will be and how positive patient outcomes will be.

According to the Canadian Cancer Society, one in four Canadians will die of cancer. This year alone, the disease will kill an estimated 75,000 people. With incidence rates on the rise, more cancer patients are facing grave prognoses. Fortunately, Lawson Health Research Institute's Dr. John Lewis, Dr. Ann Chambers, and colleagues have found new hope for survival. Their new study released July 28 in Laboratory Investigation shows that maspin, a cellular protein, can reduce the growth and spread of cancer cells -- but only when it is in the nucleus.

Maspin is believed to inhibit the formation, development, and spread of tumors in several aggressive cancers, including breast, ovarian, and head and neck cancers. Yet efforts to use this information to predict how cancer patients will fare have been challenging; the presence of maspin has been linked to both good and bad prognoses. Dr. Lewis, Dr. Chambers, and their team believed that this inconsistency was caused by the location of maspin in the cell, whether in the nucleus or in the cytoplasm, and sought to test this theory.

To assess the effects of maspin on tumor growth and development, they tested two aggressive cancers: a highly invasive head and neck cancer, and a breast cancer known to spread to the lymph nodes and the lungs. The team introduced two forms of maspin into the cancer cells, one that went into the nucleus and one that was blocked from the nucleus. Then they injected the cells into both chicken embryo and mouse models of cancer and asked the simple question: which one slowed the cancer down?

It turned out the answer was simple: when maspin was allowed to get into the nucleus of the cancer cells, the disease's ability to spread was significantly limited. In fact, the incidence of metastasis was lowered from 75% to 40%. When maspin was not established in the nucleus; however, this ability was reversed and cancer cells were far more likely to spread. These findings demonstrate that the location of maspin within the cell significantly influences cancer cells' behavior, determining how aggressive the disease will be and how positive patient outcomes will be.

"The difference is night and day," Dr. Lewis says. "Metastasis is the cause of 90% of cancer deaths. We can now clearly see that maspin is working in the nucleus to dramatically reduce both the extent and the size of distant metastases."

"This study resolves a mystery in which maspin was sometimes linked with poor patient prognosis and sometimes with good patient prognosis," Dr. Chambers explains. "Our new work suggests that when maspin is located in the nucleus it blocks cancer growth and spread. This study may help doctors to understand how aggressive a patient's cancer will be, and may also lead to new targets for drug development."

The study was funded through a Postdoctoral Fellowship Award from the Terry Fox Foundation, the Canadian Breast Cancer Research Alliance, the Canadian Cancer Society Research Institute, and the Canadian Institutes of Health Research.


Story Source:

The above story is based on materials provided by Lawson Health Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Brigitte Goulet, Wendy Kennette, Amber Ablack, Carl O Postenka, M Nicole Hague, Joe S Mymryk, Alan B Tuck, Vincent Giguθre, Ann F Chambers, John D Lewis. Nuclear localization of maspin is essential for its inhibition of tumor growth and metastasis. Laboratory Investigation, 2011; 91 (8): 1181 DOI: 10.1038/labinvest.2011.66

Cite This Page:

Lawson Health Research Institute. "A cellular protein can reduce the growth and spread of cancer cells." ScienceDaily. ScienceDaily, 1 August 2011. <www.sciencedaily.com/releases/2011/07/110728111547.htm>.
Lawson Health Research Institute. (2011, August 1). A cellular protein can reduce the growth and spread of cancer cells. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2011/07/110728111547.htm
Lawson Health Research Institute. "A cellular protein can reduce the growth and spread of cancer cells." ScienceDaily. www.sciencedaily.com/releases/2011/07/110728111547.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) — Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) — A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) — Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) — NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins