Featured Research

from universities, journals, and other organizations

Calcifying microalgae are witnesses of increasing ocean acidification

Date:
August 18, 2011
Source:
Helmholtz Association of German Research Centres
Summary:
For the first time researchers have examined on a global scale how calcified algae in their natural habitat react to increasing acidification due to higher marine uptake of carbon dioxide.

For the first time researchers have examined on a global scale how calcified algae in their natural habitat react to increasing acidification due to higher marine uptake of carbon dioxide. In the current issue of the journal Nature they explain that coccolithophores, a certain group of algae, form thinner calcite skeletons when the pH value in the ocean drops. In marine ecosystems, changes in the degree of calcification are much more pronounced than presumed to date based on laboratory tests.

Related Articles


These changes have an impact on the global carbon balance since the examined microalgae influence the carbon dioxide exchange between ocean and atmosphere.

Around one third of the anthropogenic carbon dioxide is being absorbed by the oceans where it forms carbonic acid and its reaction products. The mounting combustion of fossil energy sources led to increased acidification of the ocean over the past century and has affected marine ecosystems. Calcifying organisms like corals and certain microalgae, so-called coccolithophores, react extremely sensitively. These microscopic algae number among the phytoplankton and form a skeleton of calcite platelets.

The group of coccolithophores is very widespread and produces a large portion of the marine lime -- a process that has led to lime deposits, such as the chalk cliffs on Rόgen, over geological time scales. The reactions of calcified microalgae to ocean acidification in their natural environment have not yet been studied on a global scale. Using a method developed by Dr. Luc Beaufort, CNRS researcher at the French research institute CEREGE (Univ. Aix-Marseille/CNRS), it has now been possible to analyse a large number of plankton and sediment samples that document the changes in the calcification of coccolithophores in the present-day ocean as well as over the past 40,000 years.

The results show that coccolithophores form less lime when the water contains less carbonate ions, i.e. when it has a lower pH value (is "acidic"). "The reactions in the natural system are much more pronounced than assumed up to now," reports Dr. Bjφrn Rost from Germany's Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association, who is involved in the study. Laboratory experiments have already shown that the degree of calcification decreases, as water gets more acidic, i.e. the algae form a thinner skeleton.

In the marine ecosystem, however, there is a shift in species composition from strongly to weakly calcified species and strains. "Even small physiological differences in their reactions to environmental changes may have great ecological consequences if this influences their competitiveness," explains Rost. As ocean acidification increases, species that have to invest more energy to form their calcite skeleton may be displaced. Consequently the group of coccolithophores might take up less carbon in future -- with uncertain consequences for the global carbon cycle.

However, the study also shows that there may be exceptions to this general trend. In the coastal zone of Chile, where the "most acidic" conditions in the present-day oceans prevail (pH values of 7.6 to 7.9 instead of 8.1 on average), scientists found extremely calcified coccolithophores. Genetic analysis showed that a distinct strain of the coccolithophore species Emiliania huxleyi has evolved here. This strain has evidently succeeded in adapting to environmental conditions that are unfavourable for calcification. In view of the currently rapid pace of climate change, however, it is extremely questionable whether other representatives of the coccolithophores are able to adjust to this pace.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. Beaufort, I. Probert, T. de Garidel-Thoron, E. M. Bendif, D. Ruiz-Pino, N. Metzl, C. Goyet, N. Buchet, P. Coupel, M. Grelaud, B. Rost, R. E. M. Rickaby, C. de Vargas. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature, 2011; 476 (7358): 80 DOI: 10.1038/nature10295

Cite This Page:

Helmholtz Association of German Research Centres. "Calcifying microalgae are witnesses of increasing ocean acidification." ScienceDaily. ScienceDaily, 18 August 2011. <www.sciencedaily.com/releases/2011/08/110803133517.htm>.
Helmholtz Association of German Research Centres. (2011, August 18). Calcifying microalgae are witnesses of increasing ocean acidification. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2011/08/110803133517.htm
Helmholtz Association of German Research Centres. "Calcifying microalgae are witnesses of increasing ocean acidification." ScienceDaily. www.sciencedaily.com/releases/2011/08/110803133517.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) — A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) — The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins