Featured Research

from universities, journals, and other organizations

Researchers uncover new catalysis site

Date:
August 5, 2011
Source:
University of Virginia
Summary:
A new study details for the first time a new type of catalytic site where oxidation catalysis occurs, shedding new light on the inner workings of the process.

Image of a dual catalytic site causing the catalytic activation of an oxygen molecule (dark blue) at the perimeter of a gold nanoparticle held on a titanium dioxide support. A carbon dioxide molecule, produced by oxidation of adsorbed carbon monoxide, is liberated.
Credit: Image by Matthew Neurock, University of Virginia

Mention catalyst and most people will think of the catalytic converter, an emissions control device in the exhaust system of automobiles that reduces pollution.

But catalysts are used for a broad variety of purposes, including the conversion of petroleum and renewable resources into fuel, as well as the production of plastics, fertilizers, paints, solvents, pharmaceuticals and more. About 20 percent of the gross domestic product in the United States depends upon catalysts to facilitate the chemical reactions needed to create products for everyday life.

Catalysts are materials that activate desired chemical reactions without themselves becoming altered in the process. This allows the catalysts to be used continuously because they do not readily deteriorate and are not consumed in the chemical reactions they inspire.

Chemists long ago discovered and refined many catalysts and continue to do so, though the details of the mechanisms by which they work often are not understood.

A new collaborative study at the University of Virginia details for the first time a new type of catalytic site where oxidation catalysis occurs, shedding new light on the inner workings of the process. The study, conducted by John Yates, a professor of chemistry in the College and Graduate School of Arts & Sciences, and Matthew Neurock, a professor of chemical engineering in the School of Engineering and Applied Science, is published in the journal Science.

Yates said the discovery has implications for understanding catalysis with a potentially wide range of materials, since oxidation catalysis is critical to a number of technological applications.

"We have both experimental tools, such as spectrometers, and theoretical tools, such as computational chemistry, that now allow us to study catalysis at the atomic level," he said. "We can focus in and find that sweet spot more efficiently than ever. What we've found with this discovery could be broadly useful for designing catalysts for all kinds of catalytic reactions."

Using a titanium dioxide substrate holding nanometer-size gold particles, U.Va. chemists and chemical engineers found a special site that serves as a catalyst at the perimeter of the gold and titanium dioxide substrate.

"The site is special because it involves the bonding of an oxygen molecule to a gold atom and to an adjacent titanium atom in the support," Yates said. "Neither the gold nor the titanium dioxide exhibits this catalytic activity when studied alone."

Using spectroscopic measurements combined with theory, the Yates and Neurock team were able to follow specific molecular transformations and determine precisely where they occurred on the catalyst.

The experimental and theoretical work, guided by Yates and Neurock, was carried out by Isabel Green, a U.Va. Ph.D. candidate in chemistry, and Wenjie Tang, a research associate in chemical engineering. They demonstrated that the significant catalytic activity occurred on unique sites formed at the perimeter region between the gold particles and their titania support.

"We call it a dual catalytic site because two dissimilar atoms are involved," Yates said.

They saw that an oxygen molecule binds chemically to both a gold atom at the edge of the gold cluster and a nearby titanium atom on the titania support and reacts with an adsorbed carbon monoxide molecule to form carbon dioxide. Using spectroscopy they could follow the consumption of carbon monoxide at the dual site.

"This particular site is specific for causing the activation of the oxygen molecule to produce an oxidation reaction on the surface of the catalyst," Yates said. "It's a new class of reactive site not identified before."

The work was funded by the U.S. Department of Energy's Office of Basic Energy Sciences.


Story Source:

The above story is based on materials provided by University of Virginia. The original article was written by Fariss Samarrai. Note: Materials may be edited for content and length.


Journal Reference:

  1. Isabel Xiaoye Green, Wenjie Tang, Matthew Neurock, John T. Yates, Jr. Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst. Science, 2011; 333 (6043): 736-739 DOI: 10.1126/science.1207272

Cite This Page:

University of Virginia. "Researchers uncover new catalysis site." ScienceDaily. ScienceDaily, 5 August 2011. <www.sciencedaily.com/releases/2011/08/110804170034.htm>.
University of Virginia. (2011, August 5). Researchers uncover new catalysis site. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2011/08/110804170034.htm
University of Virginia. "Researchers uncover new catalysis site." ScienceDaily. www.sciencedaily.com/releases/2011/08/110804170034.htm (accessed September 20, 2014).

Share This



More Matter & Energy News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins