Featured Research

from universities, journals, and other organizations

Discovery points way to graphene circuits: Materials scientists find new way to control electronic properties of graphene 'alloys'

Date:
August 8, 2011
Source:
Rice University
Summary:
Materials scientists have made a fundamental discovery that could make it easier for engineers to build electronic circuits out of the much-touted nanomaterial graphene. In a new study, the researchers describe the findings that could make it possible for nanoelectronic designers to use well-understood chemical procedures to precisely control the electronic properties of "alloys" that contain mixtures of white and black graphene.

Rice University materials scientists have made a fundamental discovery that could make it easier for engineers to build electronic circuits out of the much-touted nanomaterial graphene.

Graphene's stock shot sky-high last year when the nanomaterial attracted the Nobel Prize in physics. Graphene is a layer of carbon atoms that is just one atom thick. When stacked atop one another, graphene sheets form graphite, the material found in pencils the world over. Thanks to the tools of nanotechnology, scientists today can make, manipulate and study graphene with ease. Its unique properties make it ideal for creating faster, more energy-efficient computers and other nanoelectronic devices.

But there are hurdles. To make tiny circuits out of graphene, engineers need to find ways to create intricate patterns of graphene that are separated by a similarly thin nonconductive material. One possible solution is "white graphene," one-atom-thick sheets of boron and nitrogen that are physically similar to graphene but are electrically nonconductive.

In a new paper in the journal Nano Letters, Rice materials scientist Boris Yakobson and colleagues describe a discovery that could make it possible for nanoelectronic designers to use well-understood chemical procedures to precisely control the electronic properties of "alloys" that contain both white and black graphene.

"We found there was a direct relationship between the useful properties of the final product and the chemical conditions that exist while it is being made," Yakobson said. "If more boron is available during chemical synthesis, that leads to alloys with a certain type of geometric arrangement of atoms. The beauty of the finding is that we can precisely predict the electronic properties of the final product based solely upon the conditions -- technically speaking, the so-called 'chemical potential' -- during synthesis."

Yakobson said it took about one year for him and his students to understand exactly the distribution of energy transferred between each atom of carbon, boron and nitrogen during the formation of the "alloys." This precise level of understanding of the "bonding energies" between atoms, and how it is assigned to particular edges and interfaces, was vital to developing a direct link from synthesis to morphology and to useful product.

With interest in graphene running high, Yakobson said, the new study has garnered attention far and wide. Graduate student Yuanyue Liu, the study's lead co-author, is part of a five-student delegation that just returned from a weeklong visit to Tsinghua University in Beijing. Yakobson said the visit was part of an ongoing collaboration between Tsinghua researchers and colleagues in Rice's George R. Brown School of Engineering.

Rice postdoctoral fellow Somnath Bhowmick also co-authored the paper. The research was funded by the Department of Energy and the Office of Naval Research, and the computational resources were supported by the National Institute for Computational Sciences and the National Science Foundation.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yuanyue Liu, Somnath Bhowmick, Boris I. Yakobson. BN White Graphene with “Colorful” Edges: The Energies and Morphology. Nano Letters, 2011; 110714092023006 DOI: 10.1021/nl2011142

Cite This Page:

Rice University. "Discovery points way to graphene circuits: Materials scientists find new way to control electronic properties of graphene 'alloys'." ScienceDaily. ScienceDaily, 8 August 2011. <www.sciencedaily.com/releases/2011/08/110805135803.htm>.
Rice University. (2011, August 8). Discovery points way to graphene circuits: Materials scientists find new way to control electronic properties of graphene 'alloys'. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2011/08/110805135803.htm
Rice University. "Discovery points way to graphene circuits: Materials scientists find new way to control electronic properties of graphene 'alloys'." ScienceDaily. www.sciencedaily.com/releases/2011/08/110805135803.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins