Featured Research

from universities, journals, and other organizations

When atoms are surfing on optical waves

Date:
August 9, 2011
Source:
Universitaet Tübingen
Summary:
Researchers are working on a next-generation computer: They made cold atoms interact with miniature gold wires as small as a thousandth of a millimeter. Illuminating the wires with laser light in a special way, the physicists concentrated the light field at the surface of the wires and, by that, generated so-called surface plasmons. These are bound light fields which might enable the construction of devices for optical computing and for quantum information. Circuits based on these devices would be much faster and more efficient than present technologies.

A Bose-Einstein condensate is applied to plasmonic nanowires.
Credit: Image courtesy of Universitaet Tübingen

Researchers at the University of Tübingen are working on a next-generation computer: They made cold atoms interact with miniature gold wires as small as a thousandth of a millimeter. Illuminating the wires with laser light in a special way, the physicists concentrated the light field at the surface of the wires and, by that, generated so-called surface plasmons. These are bound light fields which might enable the construction of devices for optical computing and for quantum information. Circuits based on these devices would be much faster and more efficient than present technologies.

Related Articles


In order to build an optical computing device the surface plasmons, which are useful for data transfer, must be coupled to data storage elements, such as atoms. This is what the research team lead by Dr. Sebastian Slama is working on. The junior scientist developed techniques at the chair of Prof. Claus Zimmermann which are crucial for positioning cold atoms very close to surfaces such that they can interact with bound light waves. For that atomic gases are cooled in a vacuum chamber down to temperatures as low as a few hundred Nanokelvin.

At such low temperature the atoms no longer behave as a classical gas. They form a so-called Bose-Einstein condensate, in which all atoms are in the same quantum state. The condensate can be regarded as a single huge super-atom and can be shifted by external magnetic fields to the surface, where it feels the influence of the plasmon. "We can generate plasmons which attract the atoms and others which repel them. By structuring the surface we can tailor almost arbitrary potential landscapes for the atoms," says Dr. Slama.

Recently, the scientists published their results in Nature Photonics magazine. First author Christian Stehle, who is working on his PhD thesis and has measured the data (together with Helmar Bender, who is now postdoc at the University of Sao Carlos in Brazil) is enthusiastic: "Our results had a great impact. We managed to get on the title page of the August issue, and the magazine values our work in a comment." However, with this success the scientists' work is not terminated. "Our goal is to build hybrid devices for optical computing and quantum information. We were now able to set a milestone, but there is still a lot to do," says Dr. Slama. In his opinion these goals can only be achieved in cooperation with other scientists. Beside already existing cooperations like the one with the nanotechnology group of Prof. Dieter Kern and Dr. Monika Fleischer, who fabricated the gold structures, Slama has made contact to further scientists in Tübingen, Europe and in Brazil.


Story Source:

The above story is based on materials provided by Universitaet Tübingen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Christian Stehle, Helmar Bender, Claus Zimmermann, Dieter Kern, Monika Fleischer, Sebastian Slama. Plasmonically tailored micropotentials for ultracold atoms. Nature Photonics, 2011; 5 (8): 494 DOI: 10.1038/nphoton.2011.159

Cite This Page:

Universitaet Tübingen. "When atoms are surfing on optical waves." ScienceDaily. ScienceDaily, 9 August 2011. <www.sciencedaily.com/releases/2011/08/110809083247.htm>.
Universitaet Tübingen. (2011, August 9). When atoms are surfing on optical waves. ScienceDaily. Retrieved April 20, 2015 from www.sciencedaily.com/releases/2011/08/110809083247.htm
Universitaet Tübingen. "When atoms are surfing on optical waves." ScienceDaily. www.sciencedaily.com/releases/2011/08/110809083247.htm (accessed April 20, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, April 20, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Humanoid Robot Can Recognise and Interact With People

Humanoid Robot Can Recognise and Interact With People

Reuters - Innovations Video Online (Apr. 20, 2015) — An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Drones and Health Apps at Santiago's "Robotics Day"

Drones and Health Apps at Santiago's "Robotics Day"

AFP (Apr. 20, 2015) — Latin American robotics experts gather in Santiago, Chile for "Robotics Day". Video provided by AFP
Powered by NewsLook.com
Japan Humanoid Robot Receives Customers at Department Store

Japan Humanoid Robot Receives Customers at Department Store

AFP (Apr. 20, 2015) — She can smile, she can sing and she can give you guidance at one of the most upscale department stores in Tokyo...a female-looking humanoid makes her debut as a receptionist Video provided by AFP
Powered by NewsLook.com
Pee-Power Toilet to Light Up Disaster Zones

Pee-Power Toilet to Light Up Disaster Zones

Reuters - Innovations Video Online (Apr. 20, 2015) — Students and staff are being asked to use a prototype urinal to &apos;donate&apos; urine to fuel microbial fuel cell (MFC) stacks that generate electricity to power lighting. The developers hope the pee-power technology will light toilet cubicles in refugee camps, where women are often at risk of assault in poorly lit sanitation areas. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins