Science News
from research organizations

New nanostructured glass for imaging and recording

Date:
August 15, 2011
Source:
University of Southampton
Summary:
Researchers have developed new nano-structured glass optical elements, which have applications in optical manipulation and will significantly reduce the cost of medical imaging.
Share:
       
FULL STORY

New monolithic glass space-variant polarization converter.
Credit: Image courtesy of University of Southampton

University of Southampton researchers have developed new nano-structured glass optical elements, which have applications in optical manipulation and will significantly reduce the cost of medical imaging.

In a paper published in Applied Physics Letters, a team led by Professor Peter Kazansky at the University's Optoelectronics Research Centre, describe how they have used nano-structures to develop new monolithic glass space-variant polarization converters. These millimetre-sized devices generate 'whirlpools' of light enabling: precise laser material processing, optical manipulation of atom-sized objects, ultra-high resolution imaging and potentially, table-top particle accelerators. They have since found that the technology can be developed further for optical recording.

According to the researchers, at sufficient intensities, ultra-short laser pulses can be used to imprint tiny dots (like 3D pixels) called voxels in glass. Their previous research showed that lasers with fixed polarization produce voxels consisting of a periodic arrangement of ultra-thin (tens of nanometers) planes. By passing polarized light through such a voxel imprinted in silica glass, the researchers observed that it travels differently depending on the polarization orientation of the light. This 'form birefringence' phenomenon is the basis of their new polarization converter.

The advantage of this approach over existing methods for microscopy is that it is 20 times cheaper and it is compact.

"Before this we had to use a spatial light modulator based on liquid crystal which cost about £20,000," said Professor Peter Kazansky. "Instead we have just put a tiny device into the optical beam and we get the same result."

Since publication of the paper in May this year, the researchers have developed this technology further and adapted it for a five dimensional optical recording.

"We have improved the quality and fabrication time and we have developed this five dimensional memory which means that data can be stored on the glass and last forever," said Martynas Beresna, lead researcher for the project. "No one has ever done this before."

The researchers are working with the Lithuanian company Altechna to introduce this technology to the market.


Story Source:

The above post is reprinted from materials provided by University of Southampton. Note: Materials may be edited for content and length.


Journal Reference:

  1. Martynas Beresna, Mindaugas Gecevičius, Peter G. Kazansky, Titas Gertus. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Applied Physics Letters, 2011; 98 (20): 201101 DOI: 10.1063/1.3590716

Cite This Page:

University of Southampton. "New nanostructured glass for imaging and recording." ScienceDaily. ScienceDaily, 15 August 2011. <www.sciencedaily.com/releases/2011/08/110814112305.htm>.
University of Southampton. (2011, August 15). New nanostructured glass for imaging and recording. ScienceDaily. Retrieved September 3, 2015 from www.sciencedaily.com/releases/2011/08/110814112305.htm
University of Southampton. "New nanostructured glass for imaging and recording." ScienceDaily. www.sciencedaily.com/releases/2011/08/110814112305.htm (accessed September 3, 2015).

Share This Page: