Featured Research

from universities, journals, and other organizations

Future of inks, paints and coatings takes shape: Researchers determine that particle shape affects the 'coffee ring effect'

Date:
August 17, 2011
Source:
National Science Foundation
Summary:
If you've ever spilled a drop of coffee on a surface, you might have noticed the curious way the color concentrates at the edges when the coffee dries. This is known as the "coffee ring effect," and recently, researchers have determined that the shape of the particles in the liquid is an important factor in creating this pattern.

This illustration represents a how a dried drop would appear if it contained round particles (red) or elongated particles (blue). When a drop of coffee or tea dries, its particles (which are round) leave behind a ring-like stain called the "coffee ring effect" (upper left). But if you change the shape of the particles, the coffee stain behavior changes too. Elongated particles (blue) do not exhibit the coffee ring effect, rather they are deposited across the entire area of the drop, resulting in a uniformly dark stain (lower right).
Credit: Felice Macera, University of Pennsylvania

If you've ever spilled a drop of coffee on a surface, you might have noticed the curious way the color concentrates at the edges when the coffee dries. This is known as the "coffee ring effect," and recently, researchers have determined that the shape of the particles in the liquid is an important factor in creating this pattern. The research results could eventually translate into new techniques or formulations for product coatings, or better inks and paints.

This work, published in the August 18 issue of the journal Nature was performed by Arjun Yodh and colleagues at the University of Pennsylvania.

"We found that if you change the shape of the particles in the solution, the coffee ring effect goes away, and you end up with a uniform coating," said Peter Yunker, a graduate student in Yodh's lab.

First, a little fluid dynamics: As the liquid in a droplet evaporates the edges remain fixed, so as the volume decreases fluid flows outward from the middle of the droplet to its edges. This flow carries particles to the edges, and round particles at the edge will pack closely. By the time all of the liquid in the droplet evaporates, most of the particles will be at the edge, producing the coffee ring effect.

Both the shape that liquid droplets take, and the way the shape changes as the droplets evaporate, is greatly influenced by surface tension at the air-liquid interface. This tension is a property of the interface, based on how the molecules in the liquid interact with one another versus the air. For example, liquids with a high surface tension, like water, may form a raised droplet, because the molecules are very attracted to one another and not so attracted to the air. In contrast, liquids with lower surface tension, like alcohols, are more likely to form flat spots instead of curved droplets.

The Yodh group found that elongated particles in a liquid behave differently than round ones because of the way they are affected by the surface tension of the air-liquid interface. The forces at work are even observable in a common breakfast cereal.

"If you make the particles elongated or ellipsoidal, they deform the air-water interface, which causes the particles to strongly attract one another. You can observe this effect in a bowl of cheerios-if there are only a few left they clump together in the middle of the bowl, due to the surface tension of the milk," explained Yunker.

This clumping changes the way the particles distribute themselves within the droplet. Even if the clumped ellipsoidal particles reach the edge of the droplet, they do not pack as closely as round particles. The loosely packed clumps eventually spread to cover the entire surface, filling it so an even coating of particles is deposited when evaporation is complete.

"This work gives us a new idea about how to make a uniform coating, relatively simply. If you change the particle shape, you can change the way a particle is deposited. You can also make mixtures. In some cases, even just a small amount of ellipsoids can change the way the particles deposit when they dry," said Yodh.

In future studies, the research team will explore drying and deposition of different types of fluids. They will also investigate different particle sizes and shapes, and the interplay of particle mixtures.

"This is an exciting scientific result with potential commercial applications, which was in part enabled by support of the Materials Research Science and Engineering Center at the University of Pennsylvania," said Mary Galvin, program director for the division of materials research at the National Science Foundation, which partially funded the research. The centers program, recently renamed Materials Research Centers and Teams, provides support for interdisciplinary materials research and education while addressing fundamental problems in science and engineering.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Journal Reference:

  1. Peter J. Yunker, Tim Still, Matthew A. Lohr, A. G. Yodh. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature, 2011; 476 (7360): 308 DOI: 10.1038/nature10344

Cite This Page:

National Science Foundation. "Future of inks, paints and coatings takes shape: Researchers determine that particle shape affects the 'coffee ring effect'." ScienceDaily. ScienceDaily, 17 August 2011. <www.sciencedaily.com/releases/2011/08/110817135347.htm>.
National Science Foundation. (2011, August 17). Future of inks, paints and coatings takes shape: Researchers determine that particle shape affects the 'coffee ring effect'. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/08/110817135347.htm
National Science Foundation. "Future of inks, paints and coatings takes shape: Researchers determine that particle shape affects the 'coffee ring effect'." ScienceDaily. www.sciencedaily.com/releases/2011/08/110817135347.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Physicists Undo the 'coffee Ring Effect'

Aug. 17, 2011 A team of physicists has shown how to disrupt the "coffee ring effect" -- the ring-shaped stain of particles leftover after coffee drops evaporate -- by changing the particle shape. The ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins