Featured Research

from universities, journals, and other organizations

Moon younger than previously thought, analysis of lunar rock reveals

Date:
August 18, 2011
Source:
University of Copenhagen
Summary:
Analysis of a piece of lunar rock brought back to Earth by the Apollo 16 mission in 1972 has shown that the Moon may be much younger than previously believed. This is concluded in new research conducted by an international team of scientists that includes James Connelly from the Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen. Their work has just been published in Nature.

New analysis of lunar rock has shown that the Moon may be much younger than previously believed.
Credit: © David Woods / Fotolia

Analysis of a piece of lunar rock brought back to Earth by the Apollo 16 mission in 1972 has shown that the Moon may be much younger than previously believed. This is concluded in new research conducted by an international team of scientists that includes James Connelly from the Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen. Their work has just been published in Nature.

Related Articles


The prevailing theory of our Moon's origin is that it was created by a giant impact between a large planet-like object and the proto-Earth very early in the evolution of our solar system. The energy of this impact was sufficiently high that the Moon formed from melted material that began with a deep liquid magma ocean.

As the Moon cooled, this magma ocean solidified into different mineral components, the lightest of which floated upwards to form the oldest crust. Analysis of a lunar rock sample of this presumed ancient crust has given scientists new insights into the formation of the Moon.

Luna rock from Apollo 16

"We have analysed a piece of lunar rock that was brought back to Earth by the Apollo 16 mission in 1972. Although the samples have been carefully stored at NASA Johnson Space Center since their return to Earth, we had to extensively pre-clean the samples using a new method to remove terrestrial lead contamination. Once we removed the contamination, we found that this sample is almost 100 million years younger than we expected," says researcher James Connelly of the Centre for Star and Planet Formation.

According to the existing theory for lunar formation, a rock type called ferroan anorthosite, also known as FAN, is the oldest of the Moon's crustal rocks, but scientists have had difficulty dating samples of this crust.

Newly-refined techniques help determine age of sample

The research team, which includes scientists from the Natural History Museum of Denmark, Lawrence Livermore National Laboratory, Carnegie Institute's Department of Terrestrial Magnetism and Universitι Blaise Pascal, used newly-refined techniques to determine the age of the sample of a FAN that was returned by the Apollo 16 mission and has been stored at the lunar rock collection at the NASA Johnson Space Center.

The team analysed the isotopes of the elements lead and neodymium to place the age of a sample of a FAN at 4.36 billion years. This figure is significantly younger than earlier estimates of the Moon's age that range to nearly as old as the age of the solar system itself at 4.567 billion years. The new, younger age obtained for the oldest lunar crust is similar to ages obtained for the oldest terrestrial minerals -- zircons from Western Australia -- suggesting that the oldest crust on both Earth and the Moon formed at approximately the same time.

This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques. This result strongly suggests that these ages pinpoint the time at which this sample crystallised. The extraordinarily young age of this lunar sample either means that the Moon solidified significantly later than previous estimates -- and therefore the moon itself is much younger than previously believed -- or that this sample does not represent a crystallisation product of the original magma ocean. Either scenario requires major revision to previous models for the formation of the Moon.


Story Source:

The above story is based on materials provided by University of Copenhagen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lars E. Borg, James N. Connelly, Maud Boyet, Richard W. Carlson. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature, 2011; DOI: 10.1038/nature10328

Cite This Page:

University of Copenhagen. "Moon younger than previously thought, analysis of lunar rock reveals." ScienceDaily. ScienceDaily, 18 August 2011. <www.sciencedaily.com/releases/2011/08/110817135422.htm>.
University of Copenhagen. (2011, August 18). Moon younger than previously thought, analysis of lunar rock reveals. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2011/08/110817135422.htm
University of Copenhagen. "Moon younger than previously thought, analysis of lunar rock reveals." ScienceDaily. www.sciencedaily.com/releases/2011/08/110817135422.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Space & Time News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Spokesman: 'NORAD Ready to Track Santa'

Spokesman: 'NORAD Ready to Track Santa'

AP (Dec. 19, 2014) — Pentagon spokesman Rear Adm. John Kirby said that NORAD is ready to track Santa Claus as he delivers gifts next week. Speaking tongue-in-cheek, he said if Santa drops anything off his sleigh, "we've got destroyers out there to pick them up." (Dec. 19) Video provided by AP
Powered by NewsLook.com
NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) — More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) — NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) — NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Moon and Earth May Be Younger Than Originally Thought

Aug. 18, 2011 — New research using a technique that measures the isotopes of lead and neodymium in lunar crustal rocks shows that the moon and Earth may be millions of years younger than originally ... read more

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins