Featured Research

from universities, journals, and other organizations

Greenland glacier melting faster than expected

Date:
August 18, 2011
Source:
University of Sheffield
Summary:
A key glacier in Greenland is melting faster than previously expected, according to new findings. Researchers found that Greenland's longest-observed glacier, Mittivakkat Glacier, made two consecutive record losses in mass observations for 2010 and 2011.

Mittivakkat Glacier.
Credit: Image courtesy of University of Sheffield

A key glacier in Greenland is melting faster than previously expected, according to findings by a team of academics, including Dr Edward Hanna from University of Sheffield. Dr Hanna, from the University of Sheffield's Department of Geography, was part of a team of researchers that also included Dr Sebastian Mernild from the Los Alamos Laboratory, USA, and Professor Niels Tvis Knudsen from the University of Aarhus, Denmark. The team΄s new findings present crucial insight into the effects of climate change.

The researchers found that Greenland's longest-observed glacier, Mittivakkat Glacier, made two consecutive record losses in mass observations for 2010 and 2011. The observations indicate that the total 2011 mass budget loss was 2.45 metres, 0.29 metres higher than the previous observed record loss in 2010. The 2011 value was also significantly above the 16-year average observed loss of 0.97 metres per year.

The 2011 observations further illustrate, even comparing the mass balance value against simulated glacier mass balance values back to 1898, that 2011 is a record-breaking glacier mass loss year.

Mittivakkat Glacier has been surveyed for mass balance and glacier front fluctuations since 1995 and 1931 respectively. In 2011 the glacier terminus has retreated about 22 metres, 12 metres less than the observed record of 34 metres in 2010, and approximately 1,300 metres in total since the first photographic observations in 1931.

These observations suggest that recent Mittivakkat Glacier mass losses, which have been driven largely by higher surface temperatures and low precipitation, are representative of the broader region, which includes many hundreds of local glaciers in Greenland. Observations of other glaciers in Greenland show terminus retreats comparable to that of Mittivakkat Glacier. These glaciers are similar to the Mittivakkat Glacier in size and elevation range.

Local glacier observations in Greenland are rare, and the Mittivakkat Glacier is the only glacier in Greenland for which long-term observations of both the surface mass balance and glacier front fluctuations exist.

Since 1995, the general trend for the Mittivakkat Glacier has been toward higher temperatures, less snowfall, and a more negative glacier mass balance, with record mass loss in 2011. In 14 of the last 16 years, the Mittivakkat Glacier had a negative surface mass balance.

Principal Investigator on this summer's fieldwork, Dr Edward Hanna, commented: "Our fieldwork results are a key indication of the rapid changes now being seen in and around Greenland, which are evident not just on this glacier but also on many surrounding small glaciers. It's clear that this is now a very dynamic environment in terms of its response and mass wastage to ongoing climate change.

"The retreat of these small glaciers also makes the nearby Greenland Ice Sheet more vulnerable to further summer warming which is likely to occur. There could also be an effect on North Atlantic Ocean circulation and weather patterns through melting so much extra ice. An extended glacier observation programme in east Greenland for the next few years is clearly needed to improve understanding of the links between climate change and response of the glaciers in this important region."

The project marks an important practical collaborative venture of both the joint research centre of the Universities of Sheffield and Aarhus, and Los Alamos, with funding support provided by the European Community΄s Seventh Framework Programme.

The research was carried out with funding support provided by the European Community's Seventh Framework Programme under grant agreement No. 262693.


Story Source:

The above story is based on materials provided by University of Sheffield. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. H. Mernild, N. T. Knudsen, W. H. Lipscomb, J. C. Yde, J. K. Malmros, B. Hasholt, B. H. Jakobsen. Increasing mass loss from Greenland's Mittivakkat Gletscher. The Cryosphere, 2011; 5 (2): 341 DOI: 10.5194/tc-5-341-2011

Cite This Page:

University of Sheffield. "Greenland glacier melting faster than expected." ScienceDaily. ScienceDaily, 18 August 2011. <www.sciencedaily.com/releases/2011/08/110818132221.htm>.
University of Sheffield. (2011, August 18). Greenland glacier melting faster than expected. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2011/08/110818132221.htm
University of Sheffield. "Greenland glacier melting faster than expected." ScienceDaily. www.sciencedaily.com/releases/2011/08/110818132221.htm (accessed August 30, 2014).

Share This




More Earth & Climate News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Volcano Erupts on Papua New Guinea

Raw: Volcano Erupts on Papua New Guinea

AP (Aug. 29, 2014) — Several communities were evacuated and some international flights were diverted on Friday after one of the most active volcanos in the region erupts. (Aug. 29) Video provided by AP
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Scientists Have Figured Out Why Rocks Move In Death Valley

Scientists Have Figured Out Why Rocks Move In Death Valley

Newsy (Aug. 28, 2014) — The mystery of the moving rocks in Death Valley, California, has finally been solved. Scientists are pointing to a combo of water, ice and wind. Video provided by Newsy
Powered by NewsLook.com
Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) — Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins