Featured Research

from universities, journals, and other organizations

Ancient whale skulls and directional hearing: A twisted tale

Date:
August 23, 2011
Source:
University of Michigan
Summary:
Skewed skulls may have helped early whales discriminate the direction of sounds in water and are not solely, as previously thought, a later adaptation related to echolocation.

This is a 3-D model of the asymmetrical skull of the archaeocete whale Basilosaurus isis, computed from CT scans. Note the leftward curvature of the midline suture of the skull (red line). The whole skull is affected by a torsion that is clockwise when viewed from the head forward (symbolized by the swirl). Asymmetry is a newly identified archaeocete characteristic and evolved in relation to directional hearing in water.
Credit: Julia M. Fahlke

Skewed skulls may have helped early whales discriminate the direction of sounds in water and are not solely, as previously thought, a later adaptation related to echolocation.

University of Michigan researchers report the finding in a paper being published online in the Proceedings of the National Academy of Sciences.

Asymmetric skulls are a well-known characteristic of the modern whale group known as odontocetes (toothed whales). These whales also have highly modified nasal structures with which they produce high-frequency sounds for echolocation -- a sort of biological sonar used to navigate and find food. The other modern whale group, mysticetes (baleen whales), has symmetrical skulls and does not echolocate.

These observations led scientists to believe that archaeocetes -- the extinct, ancient whales that gave rise to all modern whales -- had symmetrical skulls, and that asymmetry later developed in toothed whales in concert with echolocation. But a new analysis of archaeocete skulls by U-M postdoctoral fellow Julia Fahlke and coauthors shows that asymmetry evolved much earlier, as part of a suite of traits linked to directional hearing in water.

"This means that the initial asymmetry in whales is not related to echolocation," said Fahlke, who is working with Philip Gingerich, an internationally recognized authority on whale evolution, at the U-M Museum of Paleontology.

When Fahlke first began working with Gingerich, who is the Ermine Cowles Case Collegiate Professor of Paleontology and professor of geological sciences, ecology and evolutionary biology and anthropology, she intended to study a completely different aspect of whale evolution: tooth form and function.

"Modern whales don't chew their food," Fahlke said. "Toothed whales just bite it and swallow it, and baleen whales filter feed. But archaeocetes have characteristic wear patterns on their teeth that show that they've been chewing their food." By studying those wear patterns, she hoped to piece together how and what early whales ate and how their eating habits changed over time. She started by studying the skull of Basilosaurus, a serpent-like, predatory whale that lived 37 million years ago, using a three-dimensional digital model generated from CT scans of the fossil that were acquired at the U-M Medical School Department of Radiology.

The actual skull on which the model was based was noticeably asymmetrical, but Fahlke and colleagues at first dismissed the irregularity.

"We thought, like everybody else before us, that this might have happened during burial and fossilization," Fahlke said. "Under pressure from sediments, fossils oftentimes deform." To correct for the deformation, coauthor Aaron Wood, a former U-M postdoctoral researcher who is now at the University of Florida, straightened out the skull in the digital model. But when Fahlke began working with the "corrected" model, the jaws just didn't fit together right. Frustrated, she stared at a cast of the actual skull, puzzling over the problem.

"Finally it dawned on me: Maybe archaeocete skulls really were asymmetrical," Fahlke said. She didn't have to go far to explore that idea; the U-M Museum of Paleontology houses one of the world's largest and most complete archaeocete fossil collections. Fahlke began examining archaeocete skulls, and to her astonishment, "they all showed the same kind of asymmetry -- a leftward bend when you look at them from the top down," she said.

To study the asymmetry in a more rigorous way, Fahlke and colleagues selected six well-preserved skulls that showed no signs of artificial deformation and measured those skulls' deviation from a straight line drawn from snout to back of skull. For comparison, they made similar measurements of the decidedly symmetrical skulls of artiodactyls, the group of terrestrial mammals from which whales evolved.

"Taken together, the six skulls deviate significantly from symmetry," Fahlke said. "Taken individually, four of them deviate significantly." The other two appear asymmetrical, but their measurements fall within the range of the symmetrical comparative sample.

"This shows that asymmetry existed much earlier than previously thought -- before the baleen whales and toothed whales split," Fahlke said. "This means that the earliest baleen whales must have had asymmetrical skulls, which later became symmetrical."

The authors also show in their paper that archaeocete asymmetry is a three-dimensional torsion, or twist that affects the whole skull, rather than only a two-dimensional bend. Interestingly, archaeocetes have structures similar to those that are known in toothed whales to function in directional hearing in water: fat bodies in their lower jaws that guide sound waves to the ears, and an area of bone on the outside of each lower jaw thin enough to vibrate and transmit sound waves into the fat body. This adaptation, along with the acoustic isolation of the ear region from the rest of the skull, appears to have evolved in concert with asymmetry.

The link between asymmetry and directional hearing is not unique to whales, Fahlke said.

"Owls have asymmetrical ear openings, which help them decompose complex sounds and interpret differences and space and time, so that they can discriminate the rustling of leaves around them from the rustling of a mouse on the ground," Fahlke said. "Such ability would also be helpful when you're trying to detect prey in the water, so we interpret that the same kind of mechanism was operating for archaeocetes."

In addition to Fahlke, Gingerich and Wood, the paper's authors include Robert C. Welsh a research assistant professor of radiology and of psychiatry at the U-M Medical School.

Funding was provided by the Alexander von Humboldt Foundation, the National Geographic Society and the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Julia M. Fahlke, Philip D. Gingerich, Robert C. Welsh, Aaron R. Wood. Cranial asymmetry in Eocene archaeocete whales and the evolution of directional hearing in water. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1108927108

Cite This Page:

University of Michigan. "Ancient whale skulls and directional hearing: A twisted tale." ScienceDaily. ScienceDaily, 23 August 2011. <www.sciencedaily.com/releases/2011/08/110822154748.htm>.
University of Michigan. (2011, August 23). Ancient whale skulls and directional hearing: A twisted tale. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2011/08/110822154748.htm
University of Michigan. "Ancient whale skulls and directional hearing: A twisted tale." ScienceDaily. www.sciencedaily.com/releases/2011/08/110822154748.htm (accessed July 22, 2014).

Share This




More Plants & Animals News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
A Centuries' Old British Tradition Is Far from a Swan Song

A Centuries' Old British Tradition Is Far from a Swan Song

AFP (July 19, 2014) As if it weren't enough that the Queen is the Sovereign of the UK and 15 other Commonwealth realms, she is also the owner of all Britain's unmarked swans. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins