Featured Research

from universities, journals, and other organizations

Flexible electronics hold promise for consumer applications

Date:
September 6, 2011
Source:
Wake Forest University
Summary:
New research has advanced the field of plastic-based flexible electronics by developing, for the first time, an extremely large molecule that is stable, possesses excellent electrical properties, and inexpensive to produce.

Physics professor Oana Jurchescu and grad students Jeremy Ward and Katelyn Goetz (left to right).
Credit: Image courtesy of Wake Forest University

New research from Wake Forest University has advanced the field of plastic-based flexible electronics by developing, for the first time, an extremely large molecule that is stable, possesses excellent electrical properties, and inexpensive to produce.

The technology, developed by Oana Jurchescu, assistant professor of physics at Wake Forest, her graduate students Katelyn Goetz and Jeremy Ward, and interdisciplinary collaborators from Stanford University, Imperial College (London), University of Kentucky and Appalachian State University, eventually may turn scientific wonders -- including artificial skin, smart bandages, flexible displays, smart windshields, wearable electronics and electronic wallpapers -- into everyday realities.

Jurchescu says plastic or organic semiconductors, produced in large volume using roll-to-roll processing, inkjet printing or spray deposition, represent the "electronics everywhere" trend of the future.

In the current consumer market, however, the word "electronic" is generally associated with the word "expensive." This is largely because products such as televisions, computers and cell phones are based on silicon, which is costly to produce. Organic electronics, however, build on carbon-based (plastic) materials, which offer not only ease of manufacturing and low cost, but also lightweight and mechanical flexibility, says Jurchescu.

The team recently published its manuscript in Advanced Materials.

Prior researchers predicted that larger carbon frameworks would have properties superior to their smaller counterparts, but until now there has not been an effective route to make these larger frameworks stable and soluble enough for study.

"To accelerate the use of these technologies, we need to improve our understanding of how they work," Jurchescu says. "The devices we study (field-effect transistors) are the fundamental building blocks in all modern-based electronics. Our findings shed light on the effect of the structure of the molecules on their electrical performance, and pave the way towards a design of improved materials for high-performance, low-cost, plastic-based electronics."

Jurchescu's lab is part of the physics department and the Center for Nanotechnology and Molecular Materials.

The team studied new organic semiconductor materials amenable to transistor applications and explored their structure-property relationships. Organic semiconductors are a type of plastic material characterized by a specific structure that makes them conductive. In modern electronics, a circuit uses transistors to control the current between various regions of the circuit.

The results of the published research may lead to significant technological improvements as the performance of the transistor determines the switching speed, contrast details, and other key properties of the display.


Story Source:

The above story is based on materials provided by Wake Forest University. The original article was written by Kim McGrath. Note: Materials may be edited for content and length.


Journal Reference:

  1. Katelyn P. Goetz, Zhong Li, Jeremy W. Ward, Cortney Bougher, Jonathan Rivnay, Jeremy Smith, Brad R. Conrad, Sean R. Parkin, Thomas D. Anthopoulos, Alberto Salleo, John E. Anthony, Oana D. Jurchescu. Effect of Acene Length on Electronic Properties in 5-, 6-, and 7-Ringed Heteroacenes. Advanced Materials, 2011; 23 (32): 3698 DOI: 10.1002/adma.201101619

Cite This Page:

Wake Forest University. "Flexible electronics hold promise for consumer applications." ScienceDaily. ScienceDaily, 6 September 2011. <www.sciencedaily.com/releases/2011/08/110829114551.htm>.
Wake Forest University. (2011, September 6). Flexible electronics hold promise for consumer applications. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2011/08/110829114551.htm
Wake Forest University. "Flexible electronics hold promise for consumer applications." ScienceDaily. www.sciencedaily.com/releases/2011/08/110829114551.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins