Featured Research

from universities, journals, and other organizations

Flexible electronics hold promise for consumer applications

Date:
September 6, 2011
Source:
Wake Forest University
Summary:
New research has advanced the field of plastic-based flexible electronics by developing, for the first time, an extremely large molecule that is stable, possesses excellent electrical properties, and inexpensive to produce.

Physics professor Oana Jurchescu and grad students Jeremy Ward and Katelyn Goetz (left to right).
Credit: Image courtesy of Wake Forest University

New research from Wake Forest University has advanced the field of plastic-based flexible electronics by developing, for the first time, an extremely large molecule that is stable, possesses excellent electrical properties, and inexpensive to produce.

Related Articles


The technology, developed by Oana Jurchescu, assistant professor of physics at Wake Forest, her graduate students Katelyn Goetz and Jeremy Ward, and interdisciplinary collaborators from Stanford University, Imperial College (London), University of Kentucky and Appalachian State University, eventually may turn scientific wonders -- including artificial skin, smart bandages, flexible displays, smart windshields, wearable electronics and electronic wallpapers -- into everyday realities.

Jurchescu says plastic or organic semiconductors, produced in large volume using roll-to-roll processing, inkjet printing or spray deposition, represent the "electronics everywhere" trend of the future.

In the current consumer market, however, the word "electronic" is generally associated with the word "expensive." This is largely because products such as televisions, computers and cell phones are based on silicon, which is costly to produce. Organic electronics, however, build on carbon-based (plastic) materials, which offer not only ease of manufacturing and low cost, but also lightweight and mechanical flexibility, says Jurchescu.

The team recently published its manuscript in Advanced Materials.

Prior researchers predicted that larger carbon frameworks would have properties superior to their smaller counterparts, but until now there has not been an effective route to make these larger frameworks stable and soluble enough for study.

"To accelerate the use of these technologies, we need to improve our understanding of how they work," Jurchescu says. "The devices we study (field-effect transistors) are the fundamental building blocks in all modern-based electronics. Our findings shed light on the effect of the structure of the molecules on their electrical performance, and pave the way towards a design of improved materials for high-performance, low-cost, plastic-based electronics."

Jurchescu's lab is part of the physics department and the Center for Nanotechnology and Molecular Materials.

The team studied new organic semiconductor materials amenable to transistor applications and explored their structure-property relationships. Organic semiconductors are a type of plastic material characterized by a specific structure that makes them conductive. In modern electronics, a circuit uses transistors to control the current between various regions of the circuit.

The results of the published research may lead to significant technological improvements as the performance of the transistor determines the switching speed, contrast details, and other key properties of the display.


Story Source:

The above story is based on materials provided by Wake Forest University. The original article was written by Kim McGrath. Note: Materials may be edited for content and length.


Journal Reference:

  1. Katelyn P. Goetz, Zhong Li, Jeremy W. Ward, Cortney Bougher, Jonathan Rivnay, Jeremy Smith, Brad R. Conrad, Sean R. Parkin, Thomas D. Anthopoulos, Alberto Salleo, John E. Anthony, Oana D. Jurchescu. Effect of Acene Length on Electronic Properties in 5-, 6-, and 7-Ringed Heteroacenes. Advanced Materials, 2011; 23 (32): 3698 DOI: 10.1002/adma.201101619

Cite This Page:

Wake Forest University. "Flexible electronics hold promise for consumer applications." ScienceDaily. ScienceDaily, 6 September 2011. <www.sciencedaily.com/releases/2011/08/110829114551.htm>.
Wake Forest University. (2011, September 6). Flexible electronics hold promise for consumer applications. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2011/08/110829114551.htm
Wake Forest University. "Flexible electronics hold promise for consumer applications." ScienceDaily. www.sciencedaily.com/releases/2011/08/110829114551.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Obama: Better Ways to Create Jobs Than Keystone Pipeline

Obama: Better Ways to Create Jobs Than Keystone Pipeline

AFP (Dec. 19, 2014) US President Barack Obama says that construction of the Keystone pipeline would have 'very little impact' on US gas prices and believes there are 'more direct ways' to create construction jobs. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins