Featured Research

from universities, journals, and other organizations

Psychologists unravel mystery of how we detect life

Date:
August 30, 2011
Source:
Queen's University
Summary:
New research sheds light on how human beings visually detect the presence of a living being, even if it isn't immediately recognizable as animal or human.

New research sheds light on how human beings visually detect the presence of a living being, even if it isn't immediately recognizable as animal or human. According to the findings, two specific movement cues must be present for this to happen -- movement needs to happen close to the ground and needs to mimic what we consider to be real gravitational acceleration.

Related Articles


"To survive, we have to be able to detect the presence of a living being in the visual environment -- regardless of whether it is a fellow human, a potentially dangerous predator, or even a prey animal," says Niko Troje, a professor in the Department of Psychology who researches visual perception and biological motion. "For that purpose, we need a way of detecting life that is independent of the particular shape of an animal or person."

Humans can correctly detect the movement direction of an upright computer-generated figure but struggle when the figure is turned upside down. This suggests that our visual systems are keyed in to some very specific life-detection cues.

Using simple computer-generated figures created from dots representing the major joints of the body, Dr. Troje's team set out to unravel what the human visual system is keying into for determining that a moving object is a living being.

They found that the visual system follows a clever strategy. If a single dot is moving in a clockwise circuit, the walker seems to face to the right. Likewise, if a dot moves in a counterclockwise circuit, the walker seems to face to the left. However, to really be accepted by the visual system as indicating the movement direction of a living being, the dots also need to be close to the ground and need to move in a way that mimics real gravitational acceleration.

Using only these two main cues, Dr. Troje's team created a point-light display which is perceived by viewers as a living being, despite the fact that it doesn't resemble any known human or animal shape and doesn't contain any other cues as to which direction it may be facing. The perception that the viewers have of looking at something alive is based wholly on the point-light display containing the two main cues that convey a clear sense of directionality to our visual system.

This research was conducted in collaboration with former Queen's graduate students Dorita Chang (University of Birmingham, UK) and Daniel Saunders (Harvard Medical School, Boston) as well as former postdoctoral fellow Masahiro Hirai (Institute for Developmental Research, Kasugai, Japan). These findings will be published in a forthcoming issue of Psychological Science.


Story Source:

The above story is based on materials provided by Queen's University. Note: Materials may be edited for content and length.


Cite This Page:

Queen's University. "Psychologists unravel mystery of how we detect life." ScienceDaily. ScienceDaily, 30 August 2011. <www.sciencedaily.com/releases/2011/08/110830144634.htm>.
Queen's University. (2011, August 30). Psychologists unravel mystery of how we detect life. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2011/08/110830144634.htm
Queen's University. "Psychologists unravel mystery of how we detect life." ScienceDaily. www.sciencedaily.com/releases/2011/08/110830144634.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former NFL Players Donate Brains to Science

Former NFL Players Donate Brains to Science

Reuters - US Online Video (Mar. 3, 2015) Super Bowl champions Sidney Rice and Steve Weatherford donate their brains, post-mortem, to scientific research into repetitive brain trauma. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Alzheimer's Protein Plaque Found In 20-Year-Olds

Alzheimer's Protein Plaque Found In 20-Year-Olds

Newsy (Mar. 3, 2015) Researchers found an abnormal protein associated with Alzheimer&apos;s disease in the brains of 20-year-olds. Video provided by Newsy
Powered by NewsLook.com
This Nasal Treatment Could Help Ease Migraine Pain

This Nasal Treatment Could Help Ease Migraine Pain

Newsy (Mar. 2, 2015) Researchers gave lidocaine to 112 patients, and about 88 percent of the subjects said they needed less migraine-relief medicine the next day. Video provided by Newsy
Powered by NewsLook.com
How Facebook Use Can Lead To Depression

How Facebook Use Can Lead To Depression

Newsy (Mar. 1, 2015) Margaret Duffy of the University of Missouri talks about her study on the social network and the envy and depression that Facebook use can cause. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins