Featured Research

from universities, journals, and other organizations

New drugs hope for dangerous yeast infections

Date:
September 8, 2011
Source:
Imperial College London
Summary:
Researchers are a step closer towards creating a new class of medicines and vaccines to combat drug-resistant and deadly strains of fungal infections, following a new study.

Researchers are a step closer towards creating a new class of medicines and vaccines to combat drug-resistant and deadly strains of fungal infections, following a new study published in the Proceedings of the National Academy of Sciences.

Yeast infections are the fourth most common cause of infection acquired by people in hospitals, although in healthy people they are most usually associated with vaginal or oral yeast infections known as thrush. In extreme cases in vulnerable patients, such yeasts can circulate in the bloodstream and spread throughout the body, causing systemic candidiasis. This is life-threatening in around half of patients when the infection spreads in this way.

Researchers from Imperial College London have now found out yeast cells identify and attach to human tissue in order to colonise it and cause an infection. They have identified the key features in this process and now plan to create and test prototype drug-like molecules that interfere with the yeast and prevent the infection from taking hold.

There are already treatments that are effective at suppressing yeast infections and eliminating them from medical equipment, but microorganisms are constantly evolving to outsmart existing drugs and many strains of yeast have already become completely resistant to antifungal treatments. Scientists are seeking new ways to effectively kill them or prevent infection.

"Most healthy women will have thrush or other mild yeast infection at some point in their lives, but what is less well known is that yeasts can be lethal, and a major health concern for vulnerable hospital patients," said Dr Paula Salgado from the Department of Life Sciences at Imperial College London, one of the main investigators who carried out the research. "What I find most concerning is the fact that we don't seem to have an effective way to control the most severe cases of these infections. Our work allows us to understand the details involved and provide vital clues to develop new drugs and clinical applications."

Lead author of the research, Dr Ernesto Cota, and his colleagues from the Department of Life Sciences and the Centre for Structural Biology used data from high field magnets in Imperial's state-of-the-art Nuclear Magnetic Resonance (NMR) Centre as well as large x-ray research facilities across Europe to study a protein called Als adhesin on the surface of the yeast Candida albicans, in order to explore the role it plays in helping the yeast recognise human tissues.

To help visualise the fine details of the recognition mechanism, they probed the structure of this fungal protein attached to a complementary human cell molecule using powerful x-rays at the UK's national synchrotron facility, Diamond Light Source, in Oxfordshire. This allowed the researchers to fully identify which tiny part of Als adhesin attaches the yeast cell to human tissues and the exact features of that interaction.

"We have shown the unique way that Candida albicans has evolved to recognise and latch on to a wide variety of human cells. Als adhesin proteins give the yeast an ability to thrive throughout the human body, which is what makes it such a dangerous infection," said Dr Cota. "We hope this new knowledge will allow us to create drug-like molecules that prevent the yeast cells from taking hold, by blocking this specific molecular mechanism."

The researchers say their findings pave the way for commercial vaccines and anti-fungal compounds that are effective against a wide range of infection-causing fungi. The next step is to test small, drug-like compounds in the laboratory to analyse whether they behave as expected. These could then be developed into the first stages of new treatments.

"This work is exciting because it shows the great amount of insight that can be gained through interdisciplinary collaborations," said another author, molecular microbiologist Dr Lois Hoyer from the University of Illinois at Urbana-Champaign, who first discovered and characterized the Als adhesins. "The new data transform this field of study and highlight the next set of questions that can be answered by combining the structural biology in Dr Cota's group with the cellular biological expertise in my laboratory."

The study was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) in the UK and the National Institutes of Health (NIH) in the United States.


Story Source:

The above story is based on materials provided by Imperial College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Paula S. Salgado, Robert Yan, Jonathan D. Taylor, Lynn Burchell, Rhian Jones, Lois L. Hoyer, Steve J. Matthews, Peter J. Simpson, Ernesto Cota. Structural basis for the broad specificity to host-cell ligands by the pathogenic fungus Candida albicans. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1103496108

Cite This Page:

Imperial College London. "New drugs hope for dangerous yeast infections." ScienceDaily. ScienceDaily, 8 September 2011. <www.sciencedaily.com/releases/2011/09/110905160444.htm>.
Imperial College London. (2011, September 8). New drugs hope for dangerous yeast infections. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/09/110905160444.htm
Imperial College London. "New drugs hope for dangerous yeast infections." ScienceDaily. www.sciencedaily.com/releases/2011/09/110905160444.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
Too Few Teens Receiving HPV Vaccination, CDC Says

Too Few Teens Receiving HPV Vaccination, CDC Says

Newsy (July 24, 2014) The Centers for Disease Control and Prevention is blaming doctors for the low number of children being vaccinated for HPV. Video provided by Newsy
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins