Featured Research

from universities, journals, and other organizations

Neutrinos: Ghostly particles with unstable egos

Date:
September 6, 2011
Source:
Technische Universitaet Muenchen
Summary:
Neutrinos are known to be able to change their "flavors," or identities. But the rules that these fundamental particles follow when they alter their identity are not completely understood. A new study now suggests a non-zero value for one of the parameters governing the oscillation of neutrinos. Finding this neutrino property could ultimately help explain why matter formed in the early Universe.

View into the detector at Chooz after the installation of acrylic glass containers.
Credit: Double-Chooz Collaboration

Neutrinos are known to be able to change their "flavors," or identities. But the rules that these fundamental particles follow when they alter their identity are not completely understood. A new study including scientists of the Excellence Cluster Universe at the Technische Universität München now suggests a non-zero value for one of the parameters governing the oscillation of neutrinos. Finding this neutrino property could ultimately help explain why matter formed in the early Universe.

The paper is being published in the journal Physical Review D. Further measuring of neutrino properties is currently being performed in a five-year-experiment at the Chooz facility in France.

Neutrinos have always been mysterious. It took 26 years after their prediction by theoretical physics for the elusive particles to be confirmed, with their existence finally proven experimentally in 1956. The reason for this ordeal: Neutrinos only interact by the weak interaction with other particles of matter. When a cosmic neutrino approaches Earth, it has the best chance of passing through the whole globe unhindered. It is correspondingly difficult to find direct evidence of neutrinos with the help of a detector. Further decades passed in the discussion about their masses: None or small but finite mass?

In the meantime, it is considered certain that the ghostly particles are carrying mass, if only a virtually infinitesimal amount. According to today's knowledge, no neutrino should exist that is heavier than 1 eV (an electron "weighs" about 500,000 eV!). There are three types of neutrinos. This is also believed to be true today, so that neutrinos can each easily be classified in one of the three particle families in the framework of the standard model.

The knowledge of the neutrino mass is based on numerous experiments, in which so-called neutrino oscillations were observed. Neutrinos freely flying through the space of a particular family (i.e. the electron neutrino) can transform themselves spontaneously into a neutrino of another family affiliation (the muon neutrino or tau neutrino). One refers to an oscillation because the neutrino may change its family affiliation periodically during an extended journey. Such oscillations are only possible if the particles are carrying mass. The experimental evidence of neutrino oscillations (and thus a neutrino mass other than zero) is among the greatest breakthroughs of modern particle physics in the past 20 years.

The conversion process among different neutrino flavors depends on three so-called mixing angles: Theta 12, Theta 23 and Theta 13. In interplay with the neutrino mass-squared differences they regulate the transition probabilities among different flavors. Of the three mixing angles only two are well known and have large values, while the third one Theta 13 is the focus of current searches. So far, it was known that its value had to be small compared to the other two neutrino mixing angles. That is, Theta 13 = 0 could not be excluded. In the past, several independent projects have tried to measure this elusive parameter without success. The most important piece of information came in 1998 from the Chooz experiment in France, which established that the oscillation evoked by Theta 13 cannot be larger than approximately one tenth of those induced by the each of the other two neutrino mixing angles.

Three years ago a group of theoretical physicists of whom one, Antonio Palazzo, is now at the Excellence Cluster Universe, the others at the University and INFN of Bari, evidenced for the first time a weak hint of non-zero Theta 13 thanks to an accurate work of global analysis of all the existing neutrino oscillation data. In the meantime, two accelerator experiments (MINOS and T2K) were at work to nailing down Theta 13 and they have recently released their results. Notably, both experiments point towards a non-zero Theta 13, in agreement with the hint evidenced by the group of theorists. By combining their previous findings with the new accelerator data, in June 2011 the same group came for the first time to a statistically clear conclusion according to which sin² Theta 13 ≈ 0.02 with a confidence level of at least 3 Sigma. This means that the odds against Theta 13 > zero are 1:400.

However, physicists are very prudent and, before claiming a discovery, need to have a higher confidence level of 5 Sigma, diminishing the odds against Theta 13 > zero to 1:1 million. In order to provide secure evidence, the researchers are performing other experiments. Among these, the reactor experiment Double-Chooz, in which physicists of the Universe Clusters are strongly involved, will have a crucial role. For this purpose, it has been developed a particularly effective, terrestrial neutrino source: The particles (more precisely: anti-neutrinos) are generated and emitted during the fission processes in a nuclear power plant in particularly high flux. About 1020 antineutrinos leave a typical reactor every second. For this reason, a new experiment, the inheritor of the forerunning Chooz experiment, has started in the vicinity of the nuclear power plant in the French municipality Chooz. Thanks to this setup the value of Theta 13 will be measured with a precision that hitherto has not been achieved.

The principle behind the Double-Chooz experiment is very simple: Immediately after their generation in the reactor, several anti-neutrinos collide with a detector located 400 meters away. The spatial proximity ensures that no oscillations (or only extremely few) occur between emission and initial detection. The first detector thus measures the electron anti-neutrinos, which haven't transformed to muon and or tau neutrinos yet. A second detector of identical construction is located approximately 1,050 meters away from the reactor. If the value of the neutrino mixing angle Theta 13 is large enough, a part of the electron anti-neutrinos will become muon or tau anti-neutrinos as a result of the oscillations. The electron-anti-neutrino rate observed at the second detector therefore is much smaller than expected without oscillations.

Both detectors are filled with about 10 tons of scintillation fluid. If an electron-anti-neutrino interacts with a proton within the fluid, this will lead to inverse-beta decay: The proton captures the electron-anti-neutrino thereby transforming into one neutron by emitting one positron. Both particles generate one quick flash each in the liquid in a set time sequence. 390 photo sensors mounted on the walls of the vessel record the events. The Double Chooz experiment started physics data taking in April 2011 and will search for corresponding signals for five years. The detector performance and the status of data taking will be reported at the TAUP conference in Munich from 5 to 9 September 2011. First results are expected by the end of this year.

Establishing that Theta 13 is effectively different from zero would entail that all the three mixing angles are non-vanishing. This would provide the three neutrino flavors with maximal freedom of flipping one to each other. In turn, such a high degree of freedom is the necessary condition to generate CP-violation in the leptonic sector, i.e. to give rise to a different behavior of neutrinos and anti-neutrinos. The observation of CP-violation is now the next target of neutrino physicists as it would have significant consequences for several unanswered questions of modern physics. It could soon be clarified, in particular, whether neutrinos were responsible for the minimal surplus of matter compared to anti-matter in the early Universe. Without this asymmetry, all matter would have been transformed to radiation shortly after the birth of the Universe. There would be no galaxies, no stars or planets and no one who could measure Theta 13.


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A. M. Rotunno. Evidence of Theta 13 > 0 from global neutrino data analysis. Physical Review D, 2011; (forthcoming) [link]

Cite This Page:

Technische Universitaet Muenchen. "Neutrinos: Ghostly particles with unstable egos." ScienceDaily. ScienceDaily, 6 September 2011. <www.sciencedaily.com/releases/2011/09/110906085401.htm>.
Technische Universitaet Muenchen. (2011, September 6). Neutrinos: Ghostly particles with unstable egos. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/09/110906085401.htm
Technische Universitaet Muenchen. "Neutrinos: Ghostly particles with unstable egos." ScienceDaily. www.sciencedaily.com/releases/2011/09/110906085401.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) — China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins