Featured Research

from universities, journals, and other organizations

Neutron analysis reveals unique atom-scale behavior of 'cobalt blue'

Date:
September 8, 2011
Source:
DOE/Oak Ridge National Laboratory
Summary:
Neutron scattering studies of "cobalt blue," a compound prized by artists for its lustrous blue hue, are revealing unique magnetic characteristics that could answer questions about mysterious properties in other materials.

Just as cobalt blue's lustrous hue attracts artists and decorators, the antiferromagnetic properties of the responsible compound -- cobalt aluminate -- are attracting neutron scientists at DOE's Oak Ridge National Laboratory. Studies of magnetic interactions deep within the material's atomic structure may provide clues toward the development of energy-efficient technologies.
Credit: Light sconce image courtesy of B. Jefferson Bolender

Neutron scattering studies of "cobalt blue," a compound prized by artists for its lustrous blue hue, are revealing unique magnetic characteristics that could answer questions about mysterious properties in other materials.

Experiments at the Spallation Neutron Source (SNS) and High Flux Isotope Reactor (HFIR), both located at the Department of Energy's Oak Ridge National Laboratory, indicate novel behaviors in the antiferromagnetic material cobalt aluminum oxide, -- CoAl2O4, or cobalt aluminate -- which researcher Gregory MacDougall of ORNL's Neutron Scattering Sciences Division describes as a "highly frustrated magnetic system."

"Frustrated" in this context refers to a condition where competing interactions between the magnetic spins within the atomic structure prevent the establishment of a long-range ordered state.

"Frustration is often associated with exotic behavior in materials, including piezoelectricity, multiferrocity, and high-temperature superconductivity, each of which is potentially important for future energy-efficient technologies," MacDougall said.

Antiferromagnetism is a type of magnetic order commonly found in materials below a certain temperature where the microscopic magnetic moments (often called "spins") on neighboring atoms align with their north and south poles oriented in opposite directions. Long-range antiferromagnetic order is technologically important for magnetic information storage.

The single-crystal experiments performed at ORNL showed the magnetic properties of cobalt aluminate exhibited drastic changes at the numbingly low temperature of 6.5 Kelvin. The experiments showed that effects from competing interactions may be responsible for its intriguing but poorly understood magnetic properties.

"Cobalt blue demonstrates behaviors that have never before been appreciated in a frustrated magnet, but have been seen in other materials," MacDougall said.

"Typically, frustration in the lattice from different energy scales and competing interactions drives the ordering temperature down. What we've found is, instead of eliminating ordering entirely, the long-range order is broken up into several small domains, in which the motion of the domain walls is frozen into place," MacDougall said.

Sharp walls separate those smaller atom-scale domains, set apart by the orientation of the atoms' magnetic spin. The result of freezing such walls into place is a glass-like behavior, normally indicative of highly disordered structure.

In cobalt aluminate's case, however, the glass-like behavior is exhibited on a very clean, ordered crystal. "We think this may explain unexpected glass-like behavior in other frustrated systems," MacDougall said.

The research, reported in Proceedings of the National Academy of Sciences, is part of a larger program to study magnetic frustration -- what happens in magnetic systems when the geometry of the system or competing interactions frustrate or suppress the interactions that normally drive order, allowing novel behaviors to emerge.

"This is where you discover new physics," MacDougall said.

Cobalt aluminate is the compound responsible for cobalt blue, a vivid pigment used in paintings, colored glass and even to color concrete.

"In the past seven or eight years people have become interested in cobalt blue's magnetic properties because it turns out to be a prototypical system where competing interactions suppress magnetic order, and it is predicted to have novel ground states," MacDougall said.

The experiments were performed on two of HFIR's Triple Axis Spectrometers and the SNS's Cold Chopper Neutron Spectrometer (CNCS), making use of both thermal and "chilled," low-energy neutrons to study the cobalt aluminate at low, near absolute-zero temperatures. The single-crystal samples were fabricated in collaboration with ORNL's Correlated Electron Materials group.

MacDougall and colleagues used the triple-axis spectrometers at HFIR to study the ordering pattern of the cobalt blue lattice, which revealed the smaller domains forming at low temperatures. With SNS's CNCS, the researchers were able to study how long-lengthscale perturbations in the magnetic ordered states, known as "spin-waves," moved through the system. The speed of those spin waves in different directions is a sensitive measure of the strength of the interactions between atoms in the cobalt blue system.

The research was sponsored by the DOE Office of Science.

UT-Battelle manages ORNL for DOE's Office of Science.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gregory J. MacDougall, Delphine Gout, Jerel L. Zarestky, Georg Ehlers, Andrey Podlesnyak, Michael A. McGuire, David Mandrus, Stephen E. Nagler. Kinetically inhibited order in a diamond-lattice antiferromagnet. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1107861108

Cite This Page:

DOE/Oak Ridge National Laboratory. "Neutron analysis reveals unique atom-scale behavior of 'cobalt blue'." ScienceDaily. ScienceDaily, 8 September 2011. <www.sciencedaily.com/releases/2011/09/110906134007.htm>.
DOE/Oak Ridge National Laboratory. (2011, September 8). Neutron analysis reveals unique atom-scale behavior of 'cobalt blue'. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2011/09/110906134007.htm
DOE/Oak Ridge National Laboratory. "Neutron analysis reveals unique atom-scale behavior of 'cobalt blue'." ScienceDaily. www.sciencedaily.com/releases/2011/09/110906134007.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins