Featured Research

from universities, journals, and other organizations

New material shows promise for trapping pollutants

Date:
September 8, 2011
Source:
University of California - Santa Cruz
Summary:
Water softening techniques are very effective for removing minerals such as calcium and magnesium, which occur as positively-charged ions in "hard" water. But many heavy metals and other inorganic pollutants form negatively-charged ions in water, and existing water treatment processes to remove them are inefficient and expensive. Chemists have now developed a new type of material that can soak up negatively-charged pollutants from water.

Graduate student Honghan Fei holds a sample of SLUG-26, a new material developed by Fei and chemist Scott Oliver.
Credit: Photos by T. Stephens.

Water softening techniques are very effective for removing minerals such as calcium and magnesium, which occur as positively-charged ions in "hard" water. But many heavy metals and other inorganic pollutants form negatively-charged ions in water, and existing water treatment processes to remove them are inefficient and expensive.

Related Articles


Chemists at the University of California, Santa Cruz, have now developed a new type of material that can soak up negatively-charged pollutants from water. The new material, which they call SLUG-26, could be used to treat polluted water through an ion exchange process similar to water softening. In a water softener, sodium ions weakly attached to a negatively-charged resin are exchanged for the hard-water minerals, which are held more tightly by the resin. SLUG-26 provides a positively-charged substrate that can exchange a nontoxic negative ion for the negatively-charged pollutants.

"Our goal for the past 12 years has been to make materials that can trap pollutants, and we finally got what we wanted. The data show that the exchange process works," said Scott Oliver, associate professor of chemistry at UC Santa Cruz.

The chemical name for SLUG-26 is copper hydroxide ethanedisulfonate. It has a layered structure of positively-charged two-dimensional sheets with a high capacity for holding onto negative ions. Oliver and UCSC graduate student Honghan Fei described the compound in a paper that will be published in the journal Angewandte Chemie and is currently available online.

The researchers are currently focusing on the use of SLUG-26 to trap the radioactive metal technetium, which is a major concern for long-term disposal of radioactive waste. Technetium is produced in nuclear reactors and has a long half-life of 212,000 years. It forms the negative ion pertechnetate in water and can leach out of solid waste, making groundwater contamination a serious concern.

"It's a problem because of its environmental mobility, so they need new ways to trap it," Oliver said.

In their initial studies, the researchers used manganese, which forms the negative ion permanganate, as a non-radioactive analog for technetium and pertechnetate. The next step will be to work with technetium and see if SLUG-26 performs as effectively as it did in the initial studies.

"Whether or not it can be used in the real world is still to be seen, but so far it looks very promising," Oliver said.

This research was supported by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of California - Santa Cruz. The original article was written by Tim Stephens. Note: Materials may be edited for content and length.


Journal Reference:

  1. Honghan Fei, Scott R. J. Oliver. Copper Hydroxide Ethanedisulfonate: A Cationic Inorganic Layered Material for High-Capacity Anion Exchange. Angewandte Chemie, 2011; DOI: 10.1002/ange.201104200

Cite This Page:

University of California - Santa Cruz. "New material shows promise for trapping pollutants." ScienceDaily. ScienceDaily, 8 September 2011. <www.sciencedaily.com/releases/2011/09/110906134011.htm>.
University of California - Santa Cruz. (2011, September 8). New material shows promise for trapping pollutants. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2011/09/110906134011.htm
University of California - Santa Cruz. "New material shows promise for trapping pollutants." ScienceDaily. www.sciencedaily.com/releases/2011/09/110906134011.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins