Featured Research

from universities, journals, and other organizations

Innovation is step toward digital graphene transistors

Date:
September 7, 2011
Source:
Purdue University
Summary:
Researchers are making progress in creating digital transistors using a material called graphene, potentially sidestepping an obstacle thought to dramatically limit the material's use in computers and consumer electronics.

Researchers are making progress in creating digital transistors using a material called graphene, potentially sidestepping an obstacle thought to dramatically limit the material's use in computers and consumer electronics. This composite image shows the circuit schematics of a new type of graphene inverter, a critical building block of digital transistors, left, and scanning electron microscope images of the fabricated device.
Credit: Hong-Yan Chen, Purdue University Birck Nanotechnology Center

Researchers are making progress in creating digital transistors using a material called graphene, potentially sidestepping an obstacle thought to dramatically limit the material's use in computers and consumer electronics.

Related Articles


Graphene is a one-atom-thick layer of carbon that conducts electricity with little resistance or heat generation. After its discovery in 2004 -- which earned a Nobel Prize in physics -- it was touted as a potential replacement for silicon, possibly leading to ultrafast devices with simplified circuits that might be less expensive to manufacture.

However, graphene's luster has dulled in recent years for digital applications as researchers have discovered that it has no "band gap," a trait that is needed to switch on and off, which is critical for digital transistors.

"The fact that graphene is a zero-band-gap material by nature has raised many questions in terms of its usefulness for digital applications," said Purdue doctoral student Hong-Yan Chen.

Electrons in semiconductors like silicon exist at two energy levels, known as the valence and conduction bands. The energy gap between these two levels is called the band gap. Having the proper band gap enables transistors to turn on and off, which allows digital circuits to store information in binary code consisting of sequences of ones and zeroes.

Chen has led a team of researchers in creating a new type of graphene inverter, a critical building block of digital transistors. Other researchers have created graphene inverters, but they had to be operated at 77 degrees Kelvin, which is minus 196 Celsius (minus 320 Fahrenheit).

"If graphene could be used in digital applications, that would be really important," said Chen, who is working with Joerg Appenzeller, a professor of electrical and computer engineering and scientific director of nanoelectronics at Purdue's Birck Nanotechnology Center.

The Purdue researchers are the first to create graphene inverters that work at room temperature and have a gain larger than one, a basic requirement for digital electronics that enables transistors to amplify signals and control its switching from 0 to 1.

Findings were detailed in a paper, "Complementary-Type Graphene Inverters Operating at Room-Temperature," presented in June during the 2011 Device Research Conference in Santa Barbara, Calif.

Thus far graphene transistors have been practical only for specialized applications, such as amplifiers for cell phones and military systems. However, the new inverters represent a step toward learning how to use the material to create graphene transistors for broader digital applications that include computers and consumer electronics.

To create electronic devices, silicon is impregnated with impurities to change its semiconducting properties. Such "doping" is not easily applicable to graphene. However, the researchers have potentially solved this problem by developing "electrostatic doping," which makes it possible for graphene inverters to mimic the characteristics of silicon inverters.

Electrostatic doping is induced through the electric field between metal gates, which are located 40 nanometers away from graphene channels. The doping can be altered by varying the voltage, enabling researchers to test specific doping levels.

"This will allow us to find the sweet spot for operating the device," Chen said.

Further work will be needed to integrate the prototype into a working graphene circuit for digital applications.

The research is based at the Birck Nanotechnology Center in Purdue's Discovery Park.


Story Source:

The above story is based on materials provided by Purdue University. The original article was written by Emil Venere. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Innovation is step toward digital graphene transistors." ScienceDaily. ScienceDaily, 7 September 2011. <www.sciencedaily.com/releases/2011/09/110906144043.htm>.
Purdue University. (2011, September 7). Innovation is step toward digital graphene transistors. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2011/09/110906144043.htm
Purdue University. "Innovation is step toward digital graphene transistors." ScienceDaily. www.sciencedaily.com/releases/2011/09/110906144043.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins