Featured Research

from universities, journals, and other organizations

Circadian clocks in a blind fish

Date:
September 6, 2011
Source:
Public Library of Science
Summary:
Do animals that have evolved underground, completely isolated from the day-night cycle, still "know" what time it is? Does a normal circadian clock persist during evolution under constant darkness? A new study tackles these questions by investigating a species of cavefish which has lived for 2 million years beneath the Somalian desert, finding that it has an unusual circadian clock; it ticks with a period of up to 47 hours, and is completely blind.

The cavefish, Phreatichthys andruzzii has lived isolated for 2 million years beneath the Somalian desert.
Credit: Cavallari et al, PLoS One; doi:10.1371/journal.pbio.1001142

Do animals that have evolved for millions of years underground, completely isolated from the day-night cycle, still "know" what time it is? Does a normal circadian clock persist during evolution under constant darkness? A new study directly tackles these fundamental questions by investigating a species of cavefish, Phreatichthys andruzzii, which has lived isolated for 2 million years beneath the Somalian desert.

Many fish species have evolved in the absence of sunlight in cave systems around the world, sharing a common set of striking adaptations including eye loss. The new study, published September 6 in the online, open access journal PLoS Biology, reports that this cavefish has an unusual circadian clock; it ticks with an extremely long period (up to 47 hours), and is completely blind.

The circadian clock is a highly conserved physiological timing mechanism that allows organisms to anticipate and adapt to the day-night cycle. Since it ticks with a period that is not precisely 24 hours, it is vital that it is reset on a daily basis by signals such as light to ensure that it remains synchronized with the day-night cycle. The molecular mechanisms whereby light regulates the clock remain poorly understood. Fish have emerged as useful models to study how light regulates the clock since in most of their tissues, direct light exposure resets the clock. This differs from the situation in mammals, where light regulates the clock only indirectly through the eyes. However, the identity of the photoreceptors that must be widely expressed in fish tissues has remained a mystery.

"Cavefish give us a unique opportunity to understand how profoundly sunlight has influenced our evolution," explains Cristiano Bertolucci, co-author of the study. The authors' starting point was to compare the circadian clock of the blind, Somalian cavefish with that of a "normal" fish -- the zebrafish. They studied the locomotor activity and clock gene expression in both species when they were exposed to a light-dark cycle. While they obtained evidence for a robust circadian clock in the zebrafish that was synchronized with the light cycle, no rhythmicity was detected in the cavefish. However, in a comparable study where both fish were exposed to an alternative timing signal, a regular feeding time, both zebrafish and cavefish displayed circadian clock rhythmicity. Thus, they concluded that the cavefish still has a clock that can be regulated by feeding behaviour, but which cannot be reset by light. In a more detailed study, they were able to show that the cavefish retains a clock that ticks with an abnormally long period. Strikingly, they also found that the lack of its resetting by light is not due to eye loss in this fish; instead, mutations in two widely expressed opsin photoreceptors leave the clocks in most tissues unable to respond to light.

"This work holds great importance for two major fields of interest," explains Nicholas Foulkes, another co-author of the study. "First, it provides a fascinating new insight into how evolution in constant darkness affects animal physiology. While most detailed molecular studies of cavefish have focused on the mechanisms underlying eye loss, very little is known about other, broader adaptations to life without sunlight. Second, this work provides the first genetic evidence for the identity of the widely expressed photoreceptors in fish. This study sets the stage for a more complete understanding of how clocks respond to their environment."

This work was supported by funding from the Max-Planck-Institute for Developmental Biology, Tübingen, Karlsruhe Institute of Technology (KIT, Germany), the CNRS (France), the University of Ferrara (Italy), MIUR (Italy) projects PRIN2008 and Azione Integrata Italia-Spagna, the VIGONI program of the DAAD and the AIT-MIUR, and the MICINN (Spain) projects CRONOSOLEA and AQUAGENOMICS. JFLO has a postdoctoral fellowship from Fundacion Seneca (Murcia, Spain).


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nicola Cavallari, Elena Frigato, Daniela Vallone, Nadine Fröhlich, Jose Fernando Lopez-Olmeda, Augusto Foà, Roberto Berti, Francisco Javier Sánchez-Vázquez, Cristiano Bertolucci, Nicholas S. Foulkes. A Blind Circadian Clock in Cavefish Reveals that Opsins Mediate Peripheral Clock Photoreception. PLoS Biology, 2011; 9 (9): e1001142 DOI: 10.1371/journal.pbio.1001142

Cite This Page:

Public Library of Science. "Circadian clocks in a blind fish." ScienceDaily. ScienceDaily, 6 September 2011. <www.sciencedaily.com/releases/2011/09/110906181543.htm>.
Public Library of Science. (2011, September 6). Circadian clocks in a blind fish. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2011/09/110906181543.htm
Public Library of Science. "Circadian clocks in a blind fish." ScienceDaily. www.sciencedaily.com/releases/2011/09/110906181543.htm (accessed September 30, 2014).

Share This



More Plants & Animals News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) — Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com
Argentina Worries Over Decline of Soybean Prices

Argentina Worries Over Decline of Soybean Prices

AFP (Sep. 27, 2014) — The drop in price of soy on the international market is a cause for concern in Argentina, as soybean exports are a major source of income for Latin America's third largest economy. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Mama Bear, Cubs Hang out in California Backyard

Mama Bear, Cubs Hang out in California Backyard

Reuters - US Online Video (Sep. 27, 2014) — A mama bear and her two cubs climb trees, wrestle and take naps in the backyard of a Monrovia, California home. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com
'Crazy' Climate Forces Colombian Farmers to Adapt

'Crazy' Climate Forces Colombian Farmers to Adapt

AFP (Sep. 26, 2014) — Once upon a time, farming was a blissfully low-tech business on Colombia's northern plains. Duration: 02:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins