Featured Research

from universities, journals, and other organizations

Graphene may open the gate to future terahertz technologies

Date:
September 13, 2011
Source:
American Institute of Physics
Summary:
Nestled between radio waves and infrared light is the terahertz (THz) portion of the electromagnetic spectrum. By adding a nanoscale bit of graphene, researchers have found a better way to tune radiation for a THz transmitter.

Researchers from the University of Notre Dame in Indiana have harnessed another one of graphene's remarkable properties to better control a relatively untamed portion of the electromagnetic spectrum: the terahertz band.

Terahertz radiation offers tantalizing new opportunities in communications, medical imaging, and chemical detection. Straddling the transition between the highest energy radio waves and the lowest energy infrared light, terahertz waves are notoriously difficult to produce, detect, and modulate. Modulation, or varying the height of the terahertz waves, is particularly important because a modulated signal can carry information and is more versatile for applications such as chemical and biological sensing.

Some of today's most promising terahertz technologies are based on small semiconductor transistor-like structures that are able to modulate a terahertz signal at room temperature, which is a significant advantage over earlier modulators that could only operate at extremely cold temperatures.

Unfortunately, these transistor-like devices rely on a thin layer of metal called a "metal gate" to tune the terahertz signal. This metal gate significantly reduces the signal strength and limits how much the signal can be modulated to a lackluster 30 percent. As reported in the AIP's journal Applied Physics Letters, by replacing the metal gate with a single layer of graphene, the researchers have predicted that the modulation range can be significantly expanded to be in excess of 90 percent.

This modulation is controlled by applying a voltage between the graphene and semiconductor. Unlike the metal gate modulator, the graphene design barely diminished the output power of the terahertz energy. Made up of a one-atom-thick sheet of carbon atoms, graphene boasts a host of amazing properties: it's remarkably strong, a superb thermal insulator, a conductor of electricity, and now a better means to modulate terahertz radiation.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Berardi Sensale-Rodriguez, Tian Fang, Rusen Yan, Michelle M. Kelly, Debdeep Jena, Lei Liu, Huili (Grace) Xing. Unique prospects for graphene-based terahertz modulators. Applied Physics Letters, 2011; 99 (11): 113104 DOI: 10.1063/1.3636435

Cite This Page:

American Institute of Physics. "Graphene may open the gate to future terahertz technologies." ScienceDaily. ScienceDaily, 13 September 2011. <www.sciencedaily.com/releases/2011/09/110912143408.htm>.
American Institute of Physics. (2011, September 13). Graphene may open the gate to future terahertz technologies. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2011/09/110912143408.htm
American Institute of Physics. "Graphene may open the gate to future terahertz technologies." ScienceDaily. www.sciencedaily.com/releases/2011/09/110912143408.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins