Featured Research

from universities, journals, and other organizations

High-fat diet and lack of enzyme can lead to heart disease in mice

Date:
September 14, 2011
Source:
University of Pennsylvania School of Medicine
Summary:
It's no secret that a high-fat diet isn't healthy. Now researchers have discovered a molecular clue as to precisely why that is. Mice lacking a gene-expression-controlling enzyme fed a high-fat diet experience rapid thickening of the heart muscle and heart failure. This link -- at least in mice -- has implications for people on so-called Western diets and combating heart disease. Modulating the enzyme's activity could be a new pharmaceutical target.

It's no secret that a high-fat diet isn't healthy. Now researchers have discovered a molecular clue as to precisely why that is.

Writing in the Journal of Biological Chemistry, Mitchell Lazar, MD, PhD, the Sylvan Eisman Professor of Medicine and director of the Institute for Diabetes, Obesity, and Metabolism at the Perelman School of Medicine at the University of Pennsylvania, and colleagues, describe that mice lacking a gene-expression-controlling enzyme fed a high-fat diet experience rapid thickening of the heart muscle and heart failure. This molecular link between fat intake and an enzyme tasked with regulating gene expression -- at least in mice -- has implications for people on so-called Western diets and combating heart disease. Modulating the enzyme's activity could be a new pharmaceutical target.

The team found that the engineered mice without the enzyme HDAC3 tended to underexpress genes important in fat metabolism and energy production. Essentially, when fed a high-fat diet, these animals' hearts cannot generate enough energy and thus cannot pump blood efficiently.

These same mice tolerate a normal diet as well as non-mutant, normal animals. "HDAC3 is an intermediary that normally protects mice from the ravages of a high-fat diet," says Lazar.

HDAC enzymes control gene expression by regulating the accessibility of chromatin -- the DNA and protein structure in which genes reside. Within chromatin, DNA is wound around proteins called histones. Genes in tightly wound chromatin areas are generally inaccessible and suppressed, whereas those in loosely packed areas can be activated.

When an animal eats, its metabolism changes, but food doesn't change a cell's genome. Instead, food modulates the "epigenome," molecular markers on the chromatin that influence gene expression by affecting how tightly DNA is wrapped around its protein scaffolding.

Previously, researchers at the University of Texas Southwestern Medical Center showed that if HDAC3 were deleted in heart tissue in the middle of embryonic development, the animals developed severe thickening of the heart walls (hypertrophic cardiomyopathy) that reduces the organ's pumping efficiency. These animals usually died within months of birth.

Lazar and his team wanted to know what would happen if the gene was inactivated in heart tissue after birth. To their surprise, they found that these animals were essentially normal.

On a diet of regular chow, the engineered mice lived as long as their normal littermates, although they did tend to accumulate fat in their heart tissue. On a high-fat diet, however, these animals deteriorated rapidly, dying within a few months of hypertrophic cardiomyopathy and heart failure.

To understand why, Lazar's team compared the gene expression patterns of young mutant mice to their normal siblings. They found that the mutant mice tended to underexpress genes important in fat metabolism and energy production. Essentially, on a high-fat diet, these animals' hearts cannot generate enough energy and thus cannot pump blood efficiently.

According to Lazar, this study identifies an "interesting and dramatic example" of the link between diet and epigenetics. Now his team is working to identify the molecular nature of that link. They are also investigating whether the same pathway and interaction occurs in humans since it may contribute to the increased heart disease associated with Western diets.

Whatever the outcome of those studies, says Lazar, there is one sure-fire intervention people can always use to stave off the ravages of over-nutrition: Changing your diet. "We don't want to forget that that's still a noble thing to strive for," he says.

Other Penn authors on the study include postdoctoral fellow Zheng Sun, who was lead author, as well as Nikhil Singh, Shannon E. Mullican, Logan J. Everett, Li Li, Lijun Yuan, Xi Liu, and Jonathan A. Epstein, the William Wikoff Smith Professor and Chair of the Department of Cell and Developmental Biology.

The research was funded by the National Institute for Diabetes, Digestive and Kidney Diseases, the National Heart Lung and Blood Institute, and the Cox Institute for Medical Research.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Z. Sun, N. Singh, S. E. Mullican, L. J. Everett, L. Li, L. Yuan, X. Liu, J. A. Epstein, M. A. Lazar. Diet-induced lethality due to loss of HDAC3 in heart and skeletal muscle. Journal of Biological Chemistry, 2011; DOI: 10.1074/jbc.M111.277707

Cite This Page:

University of Pennsylvania School of Medicine. "High-fat diet and lack of enzyme can lead to heart disease in mice." ScienceDaily. ScienceDaily, 14 September 2011. <www.sciencedaily.com/releases/2011/09/110912143541.htm>.
University of Pennsylvania School of Medicine. (2011, September 14). High-fat diet and lack of enzyme can lead to heart disease in mice. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2011/09/110912143541.htm
University of Pennsylvania School of Medicine. "High-fat diet and lack of enzyme can lead to heart disease in mice." ScienceDaily. www.sciencedaily.com/releases/2011/09/110912143541.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins