Featured Research

from universities, journals, and other organizations

A 3-D reconstructed image of neural dendritic trees using the advanced electron microscope technology

Date:
October 29, 2011
Source:
National Institute for Physiological Sciences
Summary:
Scientists have revealed the minute properties of dendritic trees by reconstructing 3-D images using the advanced electron microscope technology. The research team demonstrated the principle that "neurons normalize receiving signals, making it easier to receive farther signals because of the morphological characteristics of dendritic trees."

Neurons in the brain play a role as an electric wire conveying an electrical signal. Because this electric wire is connected with various joints (synapse), various brain functions can occur. A neuron which has dendritic trees on it, receives the signals with many synapses located on those dendritic trees, and carries out functions by combining the received signals.

Related Articles


The research team of Associate Professor Kubota from The National Institute for Physiological Sciences, revealed the minute properties of dendritic trees by reconstructing 3D images using the advanced electron microscope technology. The research team proved the principle that "neurons normalize receiving signals, making it easier to receive farther signals because of the morphological characteristics of dendritic trees." It is reported in Scientific Reports, an offshoot of English science magazine Nature (September 13, 2011 electronic edition).

The team focused on the four distinct neurons in the cerebral cortex of the brain (non- pyramidal neurons). A neuron receives signals from other neurons through neurites called dendritic trees. They succeeded in 3D image reconstruction of minute morphology of dendritic trees on the computer using the advanced electron microscope technology. Consistent with this observation, they have been able to prove other standing principles underlying the morphology of dendritic trees. The size and distance of the dendritic tree and signal determine the clarity and strength of reception. A larger dendritic tree can receive father signals more effectively.

Associate Professor Kubota says, "This advanced technology of 3D image reconstruction using the electron microscope can be used for other neurons. For instance, if we can find out how the minute morphology of dendritic trees changes because of various brain degenerative diseases such as schizophrenia, autism, depression, and senile dementia, it will contribute to work out the pathological condition of those diseases. "


Story Source:

The above story is based on materials provided by National Institute for Physiological Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yoshiyuki Kubota, Fuyuki Karube, Masaki Nomura, Allan T. Gulledge, Atsushi Mochizuki, Andreas Schertel, Yasuo Kawaguchi. Conserved properties of dendritic trees in four cortical interneuron subtypes. Scientific Reports, 2011; 1 DOI: 10.1038/srep00089

Cite This Page:

National Institute for Physiological Sciences. "A 3-D reconstructed image of neural dendritic trees using the advanced electron microscope technology." ScienceDaily. ScienceDaily, 29 October 2011. <www.sciencedaily.com/releases/2011/09/110913092422.htm>.
National Institute for Physiological Sciences. (2011, October 29). A 3-D reconstructed image of neural dendritic trees using the advanced electron microscope technology. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2011/09/110913092422.htm
National Institute for Physiological Sciences. "A 3-D reconstructed image of neural dendritic trees using the advanced electron microscope technology." ScienceDaily. www.sciencedaily.com/releases/2011/09/110913092422.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com
100-Year-Old Woman Sees Ocean for First Time

100-Year-Old Woman Sees Ocean for First Time

AP (Nov. 20, 2014) Ruby Holt spent most of her 100 years on a farm in rural Tennessee, picking cotton and raising four children. She saw the ocean for the first time thanks to her assisted living center and a group that grants wishes to the elderly. (Nov. 20) Video provided by AP
Powered by NewsLook.com
Kids React to Lammily, The Realistic Barbie Alternative

Kids React to Lammily, The Realistic Barbie Alternative

Buzz60 (Nov. 19, 2014) Artist Nickolay Lamm's Kickstarter-funded Lammily doll, based on his 'What Would Barbie Look Like as a Real Woman' project, is finally available to buy. Jen Markham explains how the doll's realistic proportions are going over with a test group of second-graders who are used to the impossible measurements of Barbie dolls. Video provided by Buzz60
Powered by NewsLook.com
Trans-Fat Foods Now Linked To Poor Memory

Trans-Fat Foods Now Linked To Poor Memory

Newsy (Nov. 19, 2014) A study presented at the American Heart Association Scientific Sessions shows a link between diets high in trans fats and decreased memory recall. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins