Featured Research

from universities, journals, and other organizations

Fast switching and printable transistor invented

Date:
September 20, 2011
Source:
Linkoeping Universitet
Summary:
A fully functional, fast switching and printable transistor in cheap plastic has just been invented.

A fully functional, fast switching and printable transistor in cheap plastic is invented by researcher Lars Herlogsson, Linkoping University in Sweden.

All six articles in his doctoral thesis were recently published in journal Advanced Materials.

The thesis claims that with the help of polymers, plastics, which are already manufactured on a large scale, it is possible to manufacture transistors that are fast and can run on small printed batteries, where the drive voltage is around 1 volt.

They are particularly suitable for printed electronics.

The transistor is made up of two polymers, one of which acts as a semiconductor and the other as an electrolyte; a substance containing mobile charged ions that controls the current flowing through the transistor.

Polymers consist of linked chains of molecules. Thanks to the fact that one type of charged particle in the electrolyte, be it positive or negative ions, binds to the polymer chain in the semiconducting polymer. The active layer, in which the electric field is concentrated in the electrolyte, becomes very thin (1 nanometre) irrespective of the thickness of the electrolyte layer.

Whether it is a negative or positive ion that binds depends on whether it is a transistor that is hole-conducting (p-channel) or if it is electron-conducting (n-channel).

The thin active layer permits the use of very low driving voltages. By combining p- and n-channel transistors, Lars Herlogsson has constructed complementary circuits, CMOS circuits, which reduces the power consumption.

"This is robust CMOS technology which allows for very low drive voltages, and besides that, it is well suited to printed electronics," he says.

To achieve these low drive voltages using conventional technology would require nanometre thin layers. Printing such thin layers is impossible because the printing surface on paper or plastic film is typically rough. However, printing a 100-nanometre thick layer, as in this case, is possible using conventional printing techniques.

The idea of creating a thin active layer also impressed electronics Professor Christer Svensson, now emeritus of the examining committee.

"A scientifically very neat job, an intelligent idea that he clearly showed works in reality. There may be applications for this type of electronics such as in large TV screens where silicon is unable to compete," Svensson says.

The focus of Lars Herlogssons thesis has been to produce a material system for polymer-based organic transistors that can be printed at a reasonable price. The result is a transistor that within traditional electronics is called a field-effect transistor. Four of the thesis articles are related to just that, but the other two articles are related to the following:

  • one addresses woven electronics where the organic electrolyte transistors are embedded in the intersections between textile microfibers.
  • The other shows how to produce an organic field-effect transistor with a drop of water as the electrolyte.

All of the six articles in the dissertation have been published in the scientific journal Advanced Materials.

Now, after spending years on research, Lars Herlogsson has taken a step closer to production. September 1, he began working at the company Thin Film Electronics in Linkoping to develop inexpensive printed memories.

"As scientists, our task is to push the boundaries and show what is practical and possible. Industry can produce the organic electronics better than we can and there are many talented plastic electronics companies, says Magnus Berggren, Professor of organic electronics at Linkoping University.

Thesis: Electrolyte-Gated Organic Thin-Film Transistors, Lars Herlogsson, Department of Science and Technology, Link๖ping University, Campus Norrk๖ping, 2011


Story Source:

The above story is based on materials provided by Linkoeping Universitet. Note: Materials may be edited for content and length.


Journal Reference:

  1. Loig Kergoat, Lars Herlogsson, Daniele Braga, Benoit Piro, Minh-Chau Pham, Xavier Crispin, Magnus Berggren, Gilles Horowitz. A Water-Gate Organic Field-Effect Transistor. Advanced Materials, 2010; 22 (23): 2565 DOI: 10.1002/adma.200904163

Cite This Page:

Linkoeping Universitet. "Fast switching and printable transistor invented." ScienceDaily. ScienceDaily, 20 September 2011. <www.sciencedaily.com/releases/2011/09/110915083718.htm>.
Linkoeping Universitet. (2011, September 20). Fast switching and printable transistor invented. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2011/09/110915083718.htm
Linkoeping Universitet. "Fast switching and printable transistor invented." ScienceDaily. www.sciencedaily.com/releases/2011/09/110915083718.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) — South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) — The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) — The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) — Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins