Featured Research

from universities, journals, and other organizations

New light on detection of bacterial infection: Polymers fluoresce in the presence of bacteria

Date:
September 18, 2011
Source:
University of Sheffield
Summary:
Researchers have developed polymers that fluoresce in the presence of bacteria, paving the way for the rapid detection and assessment of wound infection using ultra-violet light.

An image of a polymer (blue) forming an intimate aggregate with the SA (red).
Credit: Image courtesy of University of Sheffield

Researchers at the University of Sheffield have developed polymers that fluoresce in the presence of bacteria, paving the way for the rapid detection and assessment of wound infection using ultra-violet light.

When contained in a gel and applied to a wound, the level of fluorescence detected will alert clinicians to the severity of infection. The polymers are irreversibly attached to fragments of antibiotics, which bind to either gram negative or gram positive bacteria -- both of which cause very serious infections -- informing clinicians as to whether to use antibiotics or not, and the most appropriate type of antibiotic treatment to prescribe. The team also found that they could use the same gels to remove the bacteria from infected wounds in tissue engineered human skin.

Professor Sheila MacNeil, an expert in tissue engineering and wound healing, explained: "The polymers incorporate a fluorescent dye and are engineered to recognise and attach to bacteria, collapsing around them as they do so. This change in polymer shape generates a fluorescent signal that we´ve been able to detect using a hand-held UV lamp."

"The availability of these gels would help clinicians and wound care nurses to make rapid, informed decisions about wound management, and help reduce the overuse of antibiotics," added project lead Dr Steve Rimmer.

Currently, determining significant levels of bacterial infection involves swabbing the wound and culturing the swabs in a specialist bacteriology laboratory with results taking several days to be available. The team is confident that its technology can ultimately reduce the detection of bacterial infection to within a few hours, or even less.

The research has already demonstrated that the polymer (PNIPAM), modified with an antibiotic (vancomycin) and containing a fluorescent dye (ethidium bromide), shows a clear fluorescent signal when it encounters gram negative bacteria. Other polymers have been shown to respond to S. aureus, a gram positive bacteria. These advances mean that a hand-held sensor device can now be developed to be used in a clinical setting.

The research is the result of a three-year project which started in 2006, part-funded by the Engineering and Physical Sciences Research Council (EPSRC) and the Defence Science and Technology Laboratory (Dstl) -- an agency of the Ministry of Defence, interested in the medical application of the research in battlefield conditions, and a subsequent EPSRC funded PhD studentship.

The team is also investigating whether using a sophisticated technique called fluorescence Non Radiative Energy Transfer (NRET) to generate the light signal could enable a highly refined sensor technology that could have applications in other areas.

"For example, we think that NRET could be very useful in an anti-terrorist and public health capacity, detecting pathogen release or bacterial contamination, whether accidental or deliberate," says Dr Rimmer. "NRET also allows us to learn more about how the polymers collapse around the bacteria, which is important in developing our understanding of how bacteria interact with these novel responsive polymers."

The team is interested in talking to potential partners to take this technology forward.


Story Source:

The above story is based on materials provided by University of Sheffield. Note: Materials may be edited for content and length.


Cite This Page:

University of Sheffield. "New light on detection of bacterial infection: Polymers fluoresce in the presence of bacteria." ScienceDaily. ScienceDaily, 18 September 2011. <www.sciencedaily.com/releases/2011/09/110915113738.htm>.
University of Sheffield. (2011, September 18). New light on detection of bacterial infection: Polymers fluoresce in the presence of bacteria. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/09/110915113738.htm
University of Sheffield. "New light on detection of bacterial infection: Polymers fluoresce in the presence of bacteria." ScienceDaily. www.sciencedaily.com/releases/2011/09/110915113738.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) — Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) — An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) — The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) — A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins