Featured Research

from universities, journals, and other organizations

Microwave ovens a key to energy production from wasted heat

Date:
September 21, 2011
Source:
Oregon State University
Summary:
More than 60 percent of the energy produced by cars, machines, and industry around the world is lost as waste heat -- an age-old problem -- but researchers have found a new way to make "thermoelectric" materials for use in technology that could potentially save vast amounts of energy.

Thermoelectric generation of electricity offers a way to recapture some of the enormous amounts of wasted energy lost during industrial activities.
Credit: Graphic courtesy of Oregon State University

More than 60 percent of the energy produced by cars, machines, and industry around the world is lost as waste heat -- an age-old problem -- but researchers have found a new way to make "thermoelectric" materials for use in technology that could potentially save vast amounts of energy.

And it's based on a device found everywhere from kitchens to dorm rooms: a microwave oven.

Chemists at Oregon State University have discovered that simple microwave energy can be used to make a very promising group of compounds called "skutterudites," and lead to greatly improved methods of capturing wasted heat and turning it into useful electricity.

A tedious, complex and costly process to produce these materials that used to take three or four days can now be done in two minutes.

Most people are aware you're not supposed to put metal foil into a microwave, because it will spark. But powdered metals are different, and OSU scientists are tapping into that basic phenomenon to heat materials to 1,800 degrees in just a few minutes -- on purpose, and with hugely useful results.

These findings, published in Materials Research Bulletin, should speed research and ultimately provide a more commercially-useful, low-cost path to a future of thermoelectric energy.

"This is really quite fascinating," said Mas Subramanian, the Milton Harris Professor of Materials Science at OSU. "It's the first time we've ever used microwave technology to produce this class of materials."

Thermoelectric power generation, researchers say, is a way to produce electricity from waste heat -- something as basic as the hot exhaust from an automobile, or the wasted heat given off by a whirring machine. It's been known of for decades but never really used other than in niche applications, because it's too inefficient, costly and sometimes the materials needed are toxic. NASA has used some expensive and high-tech thermoelectric generators to produce electricity in outer space.

The problem of wasted energy is huge. A car, for instance, wastes about two-thirds of the energy it produces. Factories, machines and power plants discard enormous amounts of energy.

But the potential is also huge. A hybrid automobile that has both gasoline and electric engines, for instance, would be ideal to take advantage of thermoelectric generation to increase its efficiency. Heat that is now being wasted in the exhaust or vented by the radiator could instead be used to help power the car. Factories could become much more energy efficient, electric utilities could recapture energy from heat that's now going up a smokestack. Minor applications might even include a wrist watch operated by body heat.

"To address this, we need materials that are low cost, non-toxic and stable, and highly efficient at converting low-grade waste heat into electricity," Subramanian said. "In material science, that's almost like being a glass and a metal at the same time. It just isn't easy. Because of these obstacles almost nothing has been done commercially in large scale thermoelectric power generation."

Skutterudites have some of the needed properties, researchers say, but historically have been slow and difficult to make. The new findings cut that production time from days to minutes, and should not only speed research on these compounds but ultimately provide a more affordable way to produce them on a mass commercial scale.

OSU researchers have created skutterudites with microwave technology with an indium cobalt antimonite compound, and believe others are possible. They are continuing research, and believe that ultimately a range of different compounds may be needed for different applications of thermoelectric generation.

Collaborators on this study included Krishnendu Biswas, a post-doctoral researcher, and Sean Muir, a doctoral candidate, both in the OSU Department of Chemistry. The work has been supported by both the National Science Foundation and U.S. Department of Energy.

"We were surprised this worked so well," Subramanian said. "Right now large-scale thermoelectric generation of electricity is just a good idea that we couldn't make work. In the future it could be huge."


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Krishnendu Biswas, Sean Muir, M. A. Subramanian. Rapid Microwave Synthesis of Indium Filled Skutterudites: An energy efficient route to high performance thermoelectric materials. Materials Research Bulletin, 2011; DOI: 10.1016/j.materresbull.2011.08.058

Cite This Page:

Oregon State University. "Microwave ovens a key to energy production from wasted heat." ScienceDaily. ScienceDaily, 21 September 2011. <www.sciencedaily.com/releases/2011/09/110920120238.htm>.
Oregon State University. (2011, September 21). Microwave ovens a key to energy production from wasted heat. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/09/110920120238.htm
Oregon State University. "Microwave ovens a key to energy production from wasted heat." ScienceDaily. www.sciencedaily.com/releases/2011/09/110920120238.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) — AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) — Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins