Featured Research

from universities, journals, and other organizations

Producing flexible CIGS solar cells with record efficiency

Date:
September 23, 2011
Source:
Empa
Summary:
New technology has yielded flexible solar cells with an 18.7% record efficiency. Key to the breakthrough is the control of the energy band gap grading in the copper indium gallium (di)selenide semiconductor, also known as CIGS, the layer that absorbs light and converts it into electricity. Scientists achieved this by controlling the vapor flux of elements during different stages of the evaporation process for growing the CIGS layer.

Flexible CIGS solar cells developed at Empa.
Credit: Image courtesy of Empa

The technology yielding flexible solar cells with an 18.7% record efficiency developed by scientists at Empa, the Swiss Federal Laboratories for Materials Science and Technology, has now been published in Nature Materials. Key to the breakthrough is the control of the energy band gap grading in the copper indium gallium (di)selenide semiconductor, also known as CIGS, the layer that absorbs light and converts it into electricity. The Empa team achieved this by controlling the vapor flux of elements during different stages of the evaporation process for growing the CIGS layer.

High-performance flexible and lightweight solar cells, say, on plastic foils, have excellent potential to lower the manufacturing costs through roll-to-roll processing and the so called "balance-of-system" cost, thus enabling affordable solar electricity in the near future. Thus far, however, flexible solar cells on polymer films have been lacking behind in performance compared to rigid cells, primarily because polymer films require much lower temperatures during deposition of the absorber layer, generally resulting in much lower efficiencies.

The research team at Empa's Laboratory for Thin Film and Photovoltaics, led by Ayodhya N. Tiwari, has been involved in the development of high-efficiency CIGS solar cells on both glass and flexible substrates with a special focus on reducing the deposition temperature of the CIGS layer. The group has repeatedly increased efficiency of flexible CIGS solar cells over the past years -- first at ETH Zurich and now since three years at Empa. With their current record value of 18.7% Tiwari and his team nearly closed the efficiency gap to cells based on multi-crystalline silicon (Si) wafers or CIGS cells on glass. The scientific details of their novel low-temperature deposition technology and the multi-layered device have recently been published in Nature Materials.

"To achieve such high efficiency values, we had to reduce the recombination losses of photo-generated charge carriers," said Tiwari. CIGS layers grown by co-evaporation at temperature of around 450 °C have a strong composition grading because of inadequate inter-diffusion of intermediate phases and preferential diffusion of gallium (Ga) towards the electrical back contact

To overcome this problem doctoral students Adrian Chirilă and Patrick Bloesch developed novel processes for optimizing the solar cell performance. To achieve an appropriate composition profile in the CIGS layer -- for enabling more efficient charge carrier collection and reduced interface recombination -- Chirilă and colleagues developed an innovative growth process by carefully controlling the Ga and indium (In) evaporation flux during different stages of the evaporation process.

High-efficiency solar cells -- grown on cheap metal-foils

Such high-efficiency CIGS solar cells up to now were developed only on glass substrates with processes where CIGS layers are grown at temperatures of 600 °C or above. In contrast, polymer foils cannot withstand such high temperatures. The low-temperature process now developed by Tiwari and Co. not only yielded an 18.7%-efficiency cell on polymer foils but also another record efficiency of 17.7% on steel foil without any diffusion oxide or nitride barrier layer commonly used in high-temperature processes. Both efficiencies were independently certified by the Fraunhofer Institute for Solar Energy Systems (ISE) in Freiburg, Germany. "We have thus shown that this low-temperature process is also applicable on low-cost metal foils such as aluminum or Mild-steel, achieving comparably high-efficiency cells and indicating a severe cost reduction potential with this technology," said Tiwari.

Scientists at FLISOM, a start-up company, and Empa have been collaborating to further develop low-temperature processing, and FLISOM is scaling up the technology for roll-to-roll manufacturing of monolithically interconnected solar modules and commercializing the technology. The research has been supported by the Swiss National Science Foundation (SNSF), the Commission for Technology and Innovation (CTI), the Swiss Federal Office of Energy (SFOE), EU Framework Programmes as well as by Swiss companies W. Blφsch AG and FLISOM.


Story Source:

The above story is based on materials provided by Empa. Note: Materials may be edited for content and length.


Journal Reference:

  1. Adrian Chirilă, Stephan Buecheler, Fabian Pianezzi, Patrick Bloesch, Christina Gretener, Alexander R. Uhl, Carolin Fella, Lukas Kranz, Julian Perrenoud, Sieghard Seyrling, Rajneesh Verma, Shiro Nishiwaki, Yaroslav E. Romanyuk, Gerhard Bilger, Ayodhya N. Tiwari. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nature Materials, 2011; DOI: 10.1038/nmat3122

Cite This Page:

Empa. "Producing flexible CIGS solar cells with record efficiency." ScienceDaily. ScienceDaily, 23 September 2011. <www.sciencedaily.com/releases/2011/09/110921131729.htm>.
Empa. (2011, September 23). Producing flexible CIGS solar cells with record efficiency. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2011/09/110921131729.htm
Empa. "Producing flexible CIGS solar cells with record efficiency." ScienceDaily. www.sciencedaily.com/releases/2011/09/110921131729.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) — A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) — Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) — Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) — The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins