Featured Research

from universities, journals, and other organizations

New insight into fatal spinal disease

Date:
September 26, 2011
Source:
University of Missouri-Columbia
Summary:
Researchers have identified a communication breakdown between nerves and muscles in mice that may provide new insight into the debilitating and fatal human disease known as spinal muscular atrophy.

Researchers at the University of Missouri have identified a communication breakdown between nerves and muscles in mice that may provide new insight into the debilitating and fatal human disease known as spinal muscular atrophy (SMA).

"Critical communication occurs at the point where nerves and muscles 'talk' to each other. When this communication between nerves and muscles is disrupted, muscles do not work properly," said Michael Garcia, associate professor of biological sciences in the College of Arts and Science and the Bond Life Sciences Center. "In this study, we found that delivery of 'the words' a nerve uses to communicate with muscles was disrupted before they arrived at the nerve ending."

This would be similar to the idea of someone opening their mouth to talk, but nothing comes out. The words are not there to come out, so no communication is transmitted to the other person.

SMA is caused by a protein deficiency present in all cells, including motor neurons. According to Garcia, this discovery also may shed light on other diseases involving motor neurons, including amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease), and dysfunctions of the synapses, such as Duchenne Muscular Dystrophy.

SMA is characterized by progressive weakness and degeneration of skeletal muscles. While a person's intellect is unaffected, this progressive disease slowly robs the body of its ability to walk, stand, sit, and eventually move at all. Currently, no cure or effective treatment exists for SMA.

"Moving involves an intricate system of communication between the brain, peripheral nerves, and muscles," Garcia said. "Motor neurons facilitate this communication through a complex series of chemical signals. If the communication system breaks down, the motor neuron will stop working and muscle activity ceases. By learning where the system breaks down, perhaps we can target treatments that prevent the break down in the system."

Results from this study are reported in the September 2011 issue of ACTA Neuropathology in a paper titled, "The spinal muscular atrophy mouse model, SMAD7, displays altered axonal transport without global neurofilament alterations."

Garcia co-authored the report with Jeffrey M. Dale, Devin M. Barry, Virginia Garcia, Ferrill Rose, Jr. and Christian Lorson, all from the University of Missouri.


Story Source:

The above story is based on materials provided by University of Missouri-Columbia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jeffrey M. Dale, Hailian Shen, Devin M. Barry, Virginia B. Garcia, Ferrill F. Rose, Christian L. Lorson, Michael L. Garcia. The spinal muscular atrophy mouse model, SMAΔ7, displays altered axonal transport without global neurofilament alterations. Acta Neuropathologica, 2011; 122 (3): 331 DOI: 10.1007/s00401-011-0848-5

Cite This Page:

University of Missouri-Columbia. "New insight into fatal spinal disease." ScienceDaily. ScienceDaily, 26 September 2011. <www.sciencedaily.com/releases/2011/09/110926151739.htm>.
University of Missouri-Columbia. (2011, September 26). New insight into fatal spinal disease. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2011/09/110926151739.htm
University of Missouri-Columbia. "New insight into fatal spinal disease." ScienceDaily. www.sciencedaily.com/releases/2011/09/110926151739.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins