Featured Research

from universities, journals, and other organizations

New nanostructure-based process will streamline production of magnetic materials

Date:
September 27, 2011
Source:
University of Massachusetts at Amherst
Summary:
Scientists report for the first time designing a simpler method of preparing ordered magnetic materials than ever by coupling magnetic properties to nanostructure formation at low temperatures. The process allows them to create room-temperature ferromagnetic materials that are stable for long periods more effectively and with fewer steps than more complicated existing methods.

This figure shows the block copolymer (left) and homopolymer (right) samples. The background of both figures is a transmission electron microscopy image showing that the block copolymer is made of nanoscopic domains visualized as a honeycomb pattern of cobalt-rich cylinders while the homopolymer is unstructured but contains small cobalt particles shown in black. Similar small cobalt particles are present in the block copolymer but they are not easily observed due to the nanoscopic block copolymer super-structure. The chemical structure of both polymers is also shown along with powder samples of the two materials. The block copolymer is attracted to the white magnet bar shown in the photograph while the non-magnetic homopolymer sample has no such attraction.
Credit: Photo produced by Tew Research Group at the University of Massachusetts Amherst

Scientists at the University of Massachusetts Amherst report that for the first time they have designed a much simpler method of preparing ordered magnetic materials than ever before, by coupling magnetic properties to nanostructure formation at low temperatures.

Related Articles


The innovative process allows them to create room-temperature ferromagnetic materials that are stable for long periods more effectively and with fewer steps than more complicated existing methods. The approach is outlined by UMass Amherst polymer scientist Gregory Tew and colleagues in the Sept. 27 issue of Nature Communications.

Tew explains that his group's signature improvement is a one-step method to generate ordered magnetic materials based on cobalt nanostructures by encoding a block copolymer with the appropriate chemical information to self-organize into nanoscopic domains. Block copolymers are made up of two or more single-polymer subunits linked by covalent chemical bonds.

The new process delivers magnetic properties to materials upon heating the sample once to a relatively low temperature, about 390 degrees (200 degrees Celsius), which transforms them into room-temperature, fully magnetic materials. Most previous processes required either much higher temperatures or more process steps to achieve the same result, which increases costs, Tew says.

He adds, "The small cobalt particles should not be magnetic at room temperature because they are too small. However, the block copolymer's nanostructure confines them locally which apparently induces stronger magnetic interactions among the particles, yielding room-temperature ferromagnetic materials that have many practical applications."

"Until now, it has not been possible to produce ordered, magnetic materials via block copolymers in a simple process," Tew says. "Current methods require multiple steps just to generate the ordered magnetic materials. They also have limited effectiveness because they may not retain the fidelity of the ordered block copolymer, they can't confine the magnetic materials to one domain of the block copolymer, or they just don't produce strongly magnetic materials. Our process answers all these limitations."

Magnetic materials are used in everything from memory storage devices in our phones and computers to the data strips on debit and credit cards. Tew and colleagues have discovered a way to build block copolymers with the necessary chemical information to self-organize into nanoscopic structures one millionth of a millimeter thin, or about 50,000 times thinner than the average human hair.

Earlier studies have demonstrated that block copolymers can be organized over relatively large areas. What makes the UMass Amherst research group's results so intriguing, Tew says, is the possible coupling of long-range organization with improved magnetic properties. This could translate into lower-cost development of new memory media, giant magneto-resistive devices and futuristic spintronic devices that might include "instant on" computers or computers that require much less power, he points out.

He adds, "Although work remains to be done before new data storage applications are enabled, for example making the magnets harder, our process is highly tunable and therefore amendable to incorporating different types of metal precursors. This result should be interesting to every scientist in nanotechnology because it shows conclusively that nano-confinement leds to completely new properties, in this case room temperature magnetic materials."

"Our work highlights the importance of learning how to control a material's nanostructure. We show that the nanostructure is directly related to an important and practical outcome, that is, the ability to generate room-temperature magnets."

"Our work highlights the importance of learning how to control a material's nanostructure. We show that the nanostructure is directly related to an important and practical outcome, that is, the ability to generate room temperature magnets." As part of this study, the UMass Amherst team also demonstrated that using a block copolymer or nanoscopic material results in a material that is magnetic at room temperature. By contrast, using a homopolymer, or unstructured material, leads only to far less useful non- or partial-magnetic materials.


Story Source:

The above story is based on materials provided by University of Massachusetts at Amherst. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zoha M. AL-Badri, Raghavendra R. Maddikeri, Yongping Zha, Hitesh D. Thaker, Priyanka Dobriyal, Raja Shunmugam, Thomas P. Russell, Gregory N. Tew. Room temperature magnetic materials from nanostructured diblock copolymers. Nature Communications, 2011; 2: 482 DOI: 10.1038/ncomms1485

Cite This Page:

University of Massachusetts at Amherst. "New nanostructure-based process will streamline production of magnetic materials." ScienceDaily. ScienceDaily, 27 September 2011. <www.sciencedaily.com/releases/2011/09/110927124642.htm>.
University of Massachusetts at Amherst. (2011, September 27). New nanostructure-based process will streamline production of magnetic materials. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2011/09/110927124642.htm
University of Massachusetts at Amherst. "New nanostructure-based process will streamline production of magnetic materials." ScienceDaily. www.sciencedaily.com/releases/2011/09/110927124642.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins