Featured Research

from universities, journals, and other organizations

Light from galaxy clusters confirms general theory of relativity

Date:
September 28, 2011
Source:
University of Copenhagen
Summary:
All observations in astronomy are based on light (electromagnetic radiation) emitted from stars and galaxies and, according to the general theory of relativity, the light will be affected by gravity. At the same time all interpretations in astronomy are based on the correctness of the theory of relatively, but it has been difficult to accurately test Einstein's theory of gravity on scales larger than the solar system. Now astrophysicists in Denmark have managed to measure how the light is affected by gravity on its way out of galaxy clusters. The observations confirm the theoretical predictions.

Until now, the gravitational redshift has only been tested with experiments and observations in relation to distances here on Earth and in relation to the solar system. With the new research the theory has been tested on a cosmological scale for the first time by analyzing galaxies in galaxy clusters in the distant universe. It is an immensely large scale, which is a factor 1,022 times greater (ten thousand billion billion times larger than the laboratory test). The observed data confirms Einstein's general theory of relativity.
Credit: Dark Cosmology Centre, Niels Bohr Institute

All observations in astronomy are based on light (electromagnetic radiation) emitted from stars and galaxies and, according to the general theory of relativity, the light will be affected by gravity. At the same time all interpretations in astronomy are based on the correctness of the theory of relatively, but it has been difficult to accurately test Einstein's theory of gravity on scales larger than the solar system. Now astrophysicists at the Dark Cosmology Centre at the Niels Bohr Institute have managed to measure how the light is affected by gravity on its way out of galaxy clusters. The observations confirm the theoretical predictions.

The results have been published in the scientific journal, Nature.

Observations of large distances in the universe are based on measurements of the redshift, which is a phenomenon where the wavelength of the light from distant galaxies is shifted more and more towards the red with greater distance. The redshift indicates how much the universe has expanded from when the light left until it was measured on Earth. Furthermore, according to Einstein's general theory of relativity, the light and thus the redshift is also affected by the gravity from large masses like galaxy clusters and causes a gravitational redshift of the light. But the gravitational influence on light has never before been measured on a cosmological scale.

"It is really wonderful. We live in an era with the technological ability to actually measure such phenomena as cosmological gravitational redshift," says astrophysicist Radek Wojtak, Dark Cosmology Centre under the Niels Bohr Institute at the University of Copenhagen.

Galaxy clusters in the searchlight

Radek Wojtak, together with colleagues Steen Hansen and Jens Hjorth, has analysed measurements of light from galaxies in approximately 8,000 galaxy clusters. Galaxy clusters are accumulations of thousands of galaxies, held together by their own gravity. This gravity affects the light being sent out into space from the galaxies.

The researchers have studied the galaxies lying in the middle of the galaxy clusters and those lying on the periphery and measured the wavelengths of the light.

"We could measure small differences in the redshift of the galaxies and see that the light from galaxies in the middle of a cluster had to 'crawl' out through the gravitational field, while it was easier for the light from the outlying galaxies to emerge," explains Radek Wojtak.

Then he measured the entire galaxy cluster's total mass and with that got the gravitational potential. By using the general theory of relativity he could now calculate the gravitational redshift for the different locations of the galaxies.

"It turned out that the theoretical calculations of the gravitational redshift based on the general theory of relativity was in complete agreement with the astronomical observations. Our analysis of observations of galaxy clusters show that the redshift of the light is proportionally offset in relation to the gravitational influence from the galaxy cluster's gravity. In that way our observations confirm the theory of relativity," explains Radek Wojtak.

New light on the dark universe

The discovery has significance for the phenomena in the universe that researchers are working to unravel. It is the mysterious dark universe -- dark matter and dark energy.

In addition to the visible celestial bodies like stars, planets and galaxies, the universe consists of a large amount of matter, which researchers can work out that it must be there, but which cannot be observed as it neither emits nor reflects light. It is invisible and is therefore called dark matter. No one knows what dark matter is, but they know what the mass and thus the gravity must be. The new results for gravitational redshift do not change the researchers' modelling for the presence of dark matter.

Another of the main components of the universe is dark energy, which according to the theoretical models acts like a kind of vacuum that causes the expansion of the universe to accelerate. According to the calculations, which are based on Einstein's theory of relativity, dark energy constitutes 72 percent of the structure of the universe. Many alternative theories try to explain the accelerating expansion without the presence of dark energy.

Theory tested on a large scale

"Now the general theory of relativity has been tested on a cosmological scale and this confirms that the general theory of relativity works and that means that there is a strong indication for the presence of dark energy," explains Radek Wojtak.

The new gravitation results thus contribute a new piece of insight to the understanding of the hidden, dark universe and provide a greater understanding of the nature of the visible universe.


Story Source:

The above story is based on materials provided by University of Copenhagen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Radosław Wojtak, Steen H. Hansen, Jens Hjorth. Gravitational redshift of galaxies in clusters as predicted by general relativity. Nature, 2011; 477 (7366): 567 DOI: 10.1038/nature10445

Cite This Page:

University of Copenhagen. "Light from galaxy clusters confirms general theory of relativity." ScienceDaily. ScienceDaily, 28 September 2011. <www.sciencedaily.com/releases/2011/09/110928131758.htm>.
University of Copenhagen. (2011, September 28). Light from galaxy clusters confirms general theory of relativity. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/09/110928131758.htm
University of Copenhagen. "Light from galaxy clusters confirms general theory of relativity." ScienceDaily. www.sciencedaily.com/releases/2011/09/110928131758.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins