Featured Research

from universities, journals, and other organizations

Redefining the kilogram and the ampere

Date:
September 29, 2011
Source:
National Physical Laboratory
Summary:
New research using graphene presents the most precise measurements of the quantum Hall effect ever made, one of the key steps in the process to redefine two Système Internationale d'unités (SI) units. New research is underpinning the biggest change in the SI Units since the system began 50 years ago.

Graphene has the potential to surpass conventional materials in many applications including quantum resistance metrology.
Credit: NPL

Groundbreaking research by the National Physical Laboratory's (NPL) Quantum Detection Group and an international team of collaborators is underpinning the biggest change in the Système Internationale d'unités (SI Units) since the system began 50 years ago.

It has long been the goal of scientists to relate all of the unit definitions to fundamental constants of nature, making them stable and universal, and giving them closer links to each other and the quantities they measure.

Key units to be redefined are the kilogram (mass) and the ampere (electric current). Presently the kilogram is defined by a physical lump of platinum-iridium and the ampere is defined via the force produced between two wires.

The goal is to define the kilogram in terms the Planck constant h and the ampere in terms of the electron charge e.

Making this change relies on the exactness of the relationships that link these constants to measurable quantities.

The quantum Hall effect defines a relationship between these two fundamental physical constants. Experiments are needed to test the quantum Hall effect in different materials in order to prove whether or not it is truly universal.

Until recently the effect was exclusively observed in a few semiconductor materials. A few years ago the quantum Hall effect was also observed by the same team in graphene, a completely different type of material with a very different electronic structure.

This research directly compared the quantum Hall effect in graphene with that observed in a traditional semiconductor material. Graphene is hotly tipped to surpass conventional materials in many important applications, partly due to its extraordinary electrical properties.

The results confirmed that the quantum Hall effect is truly universal with an uncertainty level of 86 parts per trillion, supporting the redefinition of the kilogram and ampere. The quantum Hall effect in graphene is so good that it should be the material of choice for quantum resistance metrology.

The discovery was highlighted in Nature on September 29.

JT Janssen, NPL Science Fellow and the lead author of the research, said: "Many metrology laboratories around the world have been striving to do this experiment and it is a real achievement that the NPL team and its co-workers were the first to get this key result. It turns out that the quantum Hall effect in graphene is very robust and easy to measure -- not bad for a material that was only discovered six years ago."

The research was conducted in collaboration with the Bureau International des Poids et Mesures, Chalmers University of Technology (Sweden), Lancaster University (UK) and Linköping University (Sweden).


Story Source:

The above story is based on materials provided by National Physical Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. T J B M Janssen, N E Fletcher, R Goebel, J M Williams, A Tzalenchuk, R Yakimova, S Kubatkin, S Lara-Avila, V I Falko. Graphene, universality of the quantum Hall effect and redefinition of the SI system. New Journal of Physics, 2011; 13 (9): 093026 DOI: 10.1088/1367-2630/13/9/093026

Cite This Page:

National Physical Laboratory. "Redefining the kilogram and the ampere." ScienceDaily. ScienceDaily, 29 September 2011. <www.sciencedaily.com/releases/2011/09/110929074207.htm>.
National Physical Laboratory. (2011, September 29). Redefining the kilogram and the ampere. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/09/110929074207.htm
National Physical Laboratory. "Redefining the kilogram and the ampere." ScienceDaily. www.sciencedaily.com/releases/2011/09/110929074207.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins