Featured Research

from universities, journals, and other organizations

Advance offers new opportunities in chemistry education, research

Date:
October 4, 2011
Source:
Oregon State University
Summary:
Researchers have created a new, unifying method to describe a basic chemical concept called "electronegativity," first described almost 80 years ago by Linus Pauling and part of the work that led to his receiving the Nobel Prize. The new system offers simplicity of understanding that should rewrite high school and college chemistry textbooks around the world, even as it opens important new avenues in materials and chemical research.

A new "solid state energy scale" developed by researchers at Oregon State University provides a new way to understand electronegativity, a fundamental but very important concept in chemistry.
Credit: Graphic courtesy of Oregon State University

Researchers at Oregon State University have created a new, unifying method to describe a basic chemical concept called "electronegativity," first described almost 80 years ago by OSU alumnus Linus Pauling and part of the work that led to his receiving the Nobel Prize.

The new system offers simplicity of understanding that should rewrite high school and college chemistry textbooks around the world, even as it opens important new avenues in materials and chemical research, with possible applications in everything from solar energy to solid state batteries.

The findings were just published in the Journal of the American Chemical Society, in work supported by the National Science Foundation and the U.S. Department of Energy.

"This is a quantum leap forward in understanding basic tendencies in chemical bond formation," said John Wager, a professor of electrical engineering at OSU. "We can now take a concept that college students struggle with and I could explain it to a kindergarten class.

"Even advanced scientists will gain new insights and understanding into the chemical processes they study," Wager said. "Using this system, I could look at various materials being considered for use in new solar energy cells and determine quickly that this one might work, that one doesn't stand a chance."

Electronegativity, as defined by Pauling, is "the power of an atom in a molecule to attract electrons to itself." This concept is useful for explaining why some atoms tend to attract electrons, others share them and some give them away. In the 1930s, Pauling was the first to devise a method for numerically estimating the electronegativity of an atom. Other researchers later developed different approaches.

The new system developed at OSU -- the first of its type since the early 1990s -- is called an atomic "solid state energy scale." It characterizes electronegativity as the solid state energy of elements in a compound, and shows that electrons simply move from a higher energy to a lower energy.

"This is a remarkably intuitive approach to understanding electronegativity, and yet it's based on data that are absolute, not arbitrary," said Douglas Keszler, an OSU professor of chemistry, co-author on the study and an international expert in materials science research.

"This is already one of the best instruments in my tool box for predicting the properties of new materials and understanding inorganic reactions," Keszler said. "It's not only more accurate and comprehensive, it just offers a simplicity of understanding that is very important."

The electronegativity scale developed by Pauling is among the most widely known of his contributions in studies on the nature of the chemical bond, the work for which he received a Nobel Prize in chemistry.

According to Ram Ravichandran, an electrical engineering student at OSU and co-author of the study, the new approach is based on the study of how the "band gap," a fundamental property of materials, varies for a variety of compounds. This helps to derive an absolute energy reference and a new solid state energy scale, providing a surprisingly simple way to visualize the way materials will interact.

The system could aid research in new semiconductor devices, catalysts, solar cells, light emitting materials and many other uses.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Brian D. Pelatt, Ram Ravichandran, John F. Wager, Douglas A. Keszler. Atomic Solid State Energy Scale. Journal of the American Chemical Society, 2011; 111003131629001 DOI: 10.1021/ja204670s

Cite This Page:

Oregon State University. "Advance offers new opportunities in chemistry education, research." ScienceDaily. ScienceDaily, 4 October 2011. <www.sciencedaily.com/releases/2011/10/111004132536.htm>.
Oregon State University. (2011, October 4). Advance offers new opportunities in chemistry education, research. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2011/10/111004132536.htm
Oregon State University. "Advance offers new opportunities in chemistry education, research." ScienceDaily. www.sciencedaily.com/releases/2011/10/111004132536.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins