Featured Research

from universities, journals, and other organizations

Ancient supernovas discovered: 10-billion-year-old exploding stars were a source of Earth's iron, researchers say

Date:
October 7, 2011
Source:
American Friends of Tel Aviv University
Summary:
Astronomers have just discovered 12 of the most distant and ancient supernovas ever seen, 10 of them in a part of the sky called the Subaru Deep Field.

One of ten supernovas in the Subaru Deep Field, which exploded 10 billion years ago.
Credit: Tel Aviv University.

Supernovas -- stars in the process of exploding -- open a window onto the history of the elements of Earth's periodic table as well as the history of the universe. All of those heavier than oxygen were formed in nuclear reactions that occurred during these explosions.

The most ancient explosions, far enough away that their light is reaching us only now, can be difficult to spot. A project spearheaded by Tel Aviv University researchers has uncovered a record-breaking number of supernovas in the Subaru Deep Field, a patch of sky the size of a full moon. Out of the 150 supernovas observed, 12 were among the most distant and ancient ever seen.

The discovery sharpens our understanding of the nature of supernovas and their role in element formation, say study leaders Prof. Dan Maoz, Dr. Dovi Poznanski and Or Graur of TAU's Department of Astrophysics at the Raymond and Beverly Sackler School of Physics and Astronomy. These "thermonuclear" supernovas in particular are a major source of iron in the universe.

The research, which appears in the Monthly Notices of the Royal Astronomical Society this month, was done in collaboration with teams from a number of Japanese and American institutions, including the University of Tokyo, Kyoto University, the University of California Berkeley, and Lawrence Berkeley National Laboratory.

A key element of the universe

Supernovas are nature's "element factories." During these explosions, elements are both formed and flung into interstellar space, where they serve as raw materials for new generations of stars and planets. Closer to home, says Prof. Maoz, "these elements are the atoms that form the ground we stand on, our bodies, and the iron in the blood that flows through our veins." By tracking the frequency and types of supernova explosions back through cosmic time, astronomers can reconstruct the universe's history of element creation.

In order to observe the 150,000 galaxies of the Subaru Deep Field, the team used the Japanese Subaru Telescope in Hawaii, on the 14,000-foot summit of the extinct Mauna Kea volcano. The telescope's light-collecting power, sharp images, and wide field of view allowed the researchers to overcome the challenge of viewing such distant supernovas.

By "staring" with the telescope at the Subaru Deep Field, the faint light of the most distant galaxies and supernovas accumulated over several nights at a time, forming a long and deep exposure of the field. Over the course of observations, the team "caught" the supernovas in the act of exploding, identifying 150 supernovas in all.

Sourcing man's life-blood

According to the team's analysis, thermonuclear type supernovas, also called Type-la, were exploding about five times more frequently 10 billion years ago than they are today. These supernovas are a major source of iron in the universe, the main component of Earth's core and an essential ingredient of the blood in our bodies.

Scientists have long been aware of the "universal expansion," the fact that galaxies are receding from one another. Observations using Type-Ia supernovas as beacons have shown that the expansion is accelerating, apparently under the influence of a mysterious "dark energy" -- the 2011 Nobel Prize in Physics will be awarded to three astronomers for this work. However, the nature of the supernovas themselves is poorly understood. This study improves our understanding by revealing the range of the ages of the stars that explode as Type-Ia supernovas. Eventually, this will enhance their usefulness for studying dark energy and the universal expansion, the researchers explain.


Story Source:

The above story is based on materials provided by American Friends of Tel Aviv University. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. Maguire, M. Sullivan, R. C. Thomas, P. Nugent, D. A. Howell, A. Gal-Yam, I. Arcavi, S. Ben-Ami, S. Blake, J. Botyanszki, C. Buton, J. Cooke, R. S. Ellis, I. M. Hook, M. M. Kasliwal, Y.-C. Pan, R. Pereira, P. Podsiadlowski, A. Sternberg, N. Suzuki, D. Xu, O. Yaron, J. S. Bloom, S. B. Cenko, S. R. Kulkarni, N. Law, E. O. Ofek, D. Poznanski, R. M. Quimby. PTF10ops - a subluminous, normal-width light curve Type Ia supernova in the middle of nowhere. Monthly Notices of the Royal Astronomical Society, 2011; DOI: 10.1111/j.1365-2966.2011.19526.x

Cite This Page:

American Friends of Tel Aviv University. "Ancient supernovas discovered: 10-billion-year-old exploding stars were a source of Earth's iron, researchers say." ScienceDaily. ScienceDaily, 7 October 2011. <www.sciencedaily.com/releases/2011/10/111005090434.htm>.
American Friends of Tel Aviv University. (2011, October 7). Ancient supernovas discovered: 10-billion-year-old exploding stars were a source of Earth's iron, researchers say. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2011/10/111005090434.htm
American Friends of Tel Aviv University. "Ancient supernovas discovered: 10-billion-year-old exploding stars were a source of Earth's iron, researchers say." ScienceDaily. www.sciencedaily.com/releases/2011/10/111005090434.htm (accessed October 20, 2014).

Share This



More Space & Time News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com
Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com
Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Newsy (Oct. 17, 2014) The smallest of Saturn's main moons, Mimas, wobbles as it orbits. Research reveals it might be due to a global ocean underneath its icy surface. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Survey Gives Clues to Origin of Type Ia Supernovae

Oct. 7, 2011 The 2011 Nobel Prize in Physics was awarded for groundbreaking use of supernovae to measure the expansion of the universe, which yielded a surprise: it's accelerating, not slowing down. ... read more

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins