Featured Research

from universities, journals, and other organizations

Survey gives clues to origin of Type Ia supernovae

Date:
October 7, 2011
Source:
University of California - Berkeley
Summary:
The 2011 Nobel Prize in Physics was awarded for groundbreaking use of supernovae to measure the expansion of the universe, which yielded a surprise: it's accelerating, not slowing down. Nevertheless, astronomers have been unsure what type of explosion produces these bright supernovae. A new study using the Subaru Telescope suggests that Type Ia supernovae come from the merger of two white dwarfs, not one white dwarf grown fat by feeding off its companion.

This three-color composite of a portion of the Subaru Deep Field shows mostly galaxies with a few stars. The inset shows one of the 10 most distant and ancient Type Ia supernovae discovered by the American, Israeli and Japanese team.
Credit: Image courtesy of O. Graur, D. Poznanski & Subaru Deep Field team

The largest survey to date of distant exploding stars is giving astronomers new clues to what's behind the Type Ia supernovae they use to measure distances across the cosmos.

Related Articles


These stellar explosions helped astronomers conclude more than a decade ago that dark energy is accelerating the expansion of the universe, and this week earned the discoverers -- including UC Berkeley physicist Saul Perlmutter -- the 2011 Nobel Prize in Physics. But what caused them was a mystery. Many astronomers thought white dwarf stars were pulling matter from their normal stellar companions and growing so fat they exploded.

But the new study by American, Israeli and Japanese astronomers instead suggests that many, if not most, of the Type Ia supernovae result when two white dwarf stars merge and annihilate in a thermonuclear explosion.

"The nature of these events themselves is poorly understood, and there is a fierce debate about how these explosions ignite," said Dovi Poznanski, one of the main authors of the paper and a post-doctoral fellow at the University of California, Berkeley, and Lawrence Berkeley National Laboratory.

"The main goal of this survey was to measure the statistics of a large population of supernovae at a very early time, to get a look at the possible star systems," he said. "Two white dwarfs merging can explain well what we are seeing."

Poznanski, Tel-Aviv University graduate student Or Graur and their colleagues will report their findings in the October 2011 issue of the journal Monthly Notices of the Royal Astronomical Society (MNRAS).

The results do not place in jeopardy the conclusion that the expansion of the universe is accelerating, said coauthor Alex Filippenko, UC Berkeley professor of astronomy.

"As long as Type Ias explode in the same way, no matter what their origin, their intrinsic brightnesses should be the same, and the distance calibrations would remain unchanged," he said.

Evidence that Type Ia supernovae are caused by the merger of two white dwarfs the so-called double-degenerate theory has been accumulating over the past two years, based on surveys by the Hubble Space Telescope and others.

"The tide is definitely turning, and these are the best data yet to support the double-degenerate theory," Filippenko said.

White dwarfs are dense, compact stars formed from normal stars like the sun once they exhaust their nuclear fuel and compress under their own weight.

The new, largest-ever survey using the Subaru Telescope in Hawaii accumulated a sample of 150 distant supernovas that exploded between 5 and 10 billion years ago.

The finding, when combined with previous surveys of closer Type Ia supernovae, suggests that astronomers surveying Type Ia supernovae may be seeing a mixture of single- and double-degenerates.

"There are no good answers yet, and it could be that we are seeing a mix of the two types of explosions," Poznanski said.

Though the two-faced nature of Type Ia supernovae still allows them to be used as calibratable candles to measure cosmic distance, Filippenko said, it might affect attempts to "quantify in detail the history of the expansion rate of the universe. The subtle differences between single- and double-degenerate models could introduce a systematic error that we'll need to account for."

The team found that Type Ia supernovae were five times more common 5-10 billion years ago than today, probably because there were more young stars back then rapidly evolving into white dwarfs. Moreover, this study allowed the team to more accurately determine the production of iron over cosmic time, as Type Ia supernovae create iron through nuclear reactions when they explode.

To find their distant sample, the international team of astronomers exploited the enormous light collecting power of the Subaru Telescope's Suprime-Camera on four separate occasions. They pointed the ground-based telescope, located atop Hawaii's Mauna Kea volcano, toward a single field in the sky that was approximately the size of the full moon. Each run yielded about 40 supernovae among 150,000 galaxies.

Then they used the Keck telescopes on Mauna Kea to observe the galaxies where these explosions occurred. These observations were crucial for pinpointing the distance of these events.

Future observations with the Hyper Suprime-Camera, which will be mounted on the Subaru Telescope, will be able to discover even larger and more distant supernova samples to test this conclusion.

Other authors on the paper include Dan Maoz, Naoki Yasuda, Tomonori Totani, Masataka Fukugita, Ryan J. Foley, Jeffrey M. Silverman, Avishay Gal-Yam, Assaf Horesh, and Buell T. Jannuzi. The research was supported in part by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of California - Berkeley. The original article was written by Robert Sanders, Media Relations. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. Maguire, M. Sullivan, R. C. Thomas, P. Nugent, D. A. Howell, A. Gal-Yam, I. Arcavi, S. Ben-Ami, S. Blake, J. Botyanszki, C. Buton, J. Cooke, R. S. Ellis, I. M. Hook, M. M. Kasliwal, Y.-C. Pan, R. Pereira, P. Podsiadlowski, A. Sternberg, N. Suzuki, D. Xu, O. Yaron, J. S. Bloom, S. B. Cenko, S. R. Kulkarni, N. Law, E. O. Ofek, D. Poznanski, R. M. Quimby. PTF10ops - a subluminous, normal-width light curve Type Ia supernova in the middle of nowhere. Monthly Notices of the Royal Astronomical Society, 2011; DOI: 10.1111/j.1365-2966.2011.19526.x

Cite This Page:

University of California - Berkeley. "Survey gives clues to origin of Type Ia supernovae." ScienceDaily. ScienceDaily, 7 October 2011. <www.sciencedaily.com/releases/2011/10/111007161638.htm>.
University of California - Berkeley. (2011, October 7). Survey gives clues to origin of Type Ia supernovae. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2011/10/111007161638.htm
University of California - Berkeley. "Survey gives clues to origin of Type Ia supernovae." ScienceDaily. www.sciencedaily.com/releases/2011/10/111007161638.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Space & Time News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Soyuz Spacecraft Docks With International Space Station: NASA

Soyuz Spacecraft Docks With International Space Station: NASA

AFP (Nov. 24, 2014) A Russian Soyuz spacecraft carrying Italy's first female astronaut safely docks with the International Space Station, according to NASA. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Multi-National Crew Safely Docks at Space Station

Multi-National Crew Safely Docks at Space Station

Reuters - US Online Video (Nov. 24, 2014) A Russian Soyuz rocket delivers a multi-national trio to the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Raw: Soyuz Docks With Int'l Space Station

Raw: Soyuz Docks With Int'l Space Station

AP (Nov. 23, 2014) A Russian capsule carrying three astronauts from Russia, the United States and Italy has arrived at the International Space Station. (Nov. 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Ancient Supernovas Discovered: 10-Billion-Year-Old Exploding Stars Were a Source of Earth's Iron, Researchers Say

Oct. 5, 2011 Astronomers have just discovered 12 of the most distant and ancient supernovas ever seen, 10 of them in a part of the sky called the Subaru Deep ... read more

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins