Featured Research

from universities, journals, and other organizations

Unlocking jams in fluid materials: A theoretical model to understand how to best avoid jamming of soft matter

Date:
October 6, 2011
Source:
Springer Science+Business Media
Summary:
In a new study, a German scientist constructed a theoretical model to understand how to best avoid jamming of soft matter that can be applied in food and cosmetics production.

In a study recently published in European Physical Journal E (EPJE), a German scientist constructed a theoretical model to understand how to best avoid jamming of soft matter that can be applied in food and cosmetics production.

Thomas Voigtmann, a researcher at the Institute for Material Physics in Space in Cologne, Germany, evaluated the internal friction force, or yield stress, to be overcome before a solid material made of a metallic melt with a glass structure can flow and thus prevent jamming.

These materials have an apparent viscosity that drops if they are forced to flow quickly -- a property called shear thinning. They are similar to solid paint that is highly viscous, almost solid, in a bucket and can easily become liquid when applied with a brush. The force applied to the paint by a brush stroke is sufficient for shear thinning to occur.

The properties of these metallic melts are not well understood. Until now, these materials have been studied using models for three classes of materials: soft matter (like toothpaste), metallic liquids, or granular materials (like sand).

However, none of these models accurately describes these materials.

Instead, Voigtmann devised two models that take into account the common properties between the three material classes; here the goal was to determine whether their yield stress is either continuous (it gets smaller with the flow rate) or discontinuous (remains at a constant value regardless of the flow rate) at a decreasing flow rate. He used available data to test the models; however, further data on lower flow rates than currently available would be required in order to be conclusive.

Further theoretical research will help us to understand how to process large amounts of soft matter for the food industry such as mayonnaise (an emulsion), jelly (a colloidal dispersion), or granular materials such as grains or pharmaceutical pills while avoiding blockages as they flow through processing pipes.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. Th. Voigtmann. Yield stresses and flow curves in metallic glass formers and granular systems. The European Physical Journal E, 2011; 34 (9) DOI: 10.1140/epje/i2011-11106-8

Cite This Page:

Springer Science+Business Media. "Unlocking jams in fluid materials: A theoretical model to understand how to best avoid jamming of soft matter." ScienceDaily. ScienceDaily, 6 October 2011. <www.sciencedaily.com/releases/2011/10/111005110407.htm>.
Springer Science+Business Media. (2011, October 6). Unlocking jams in fluid materials: A theoretical model to understand how to best avoid jamming of soft matter. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/10/111005110407.htm
Springer Science+Business Media. "Unlocking jams in fluid materials: A theoretical model to understand how to best avoid jamming of soft matter." ScienceDaily. www.sciencedaily.com/releases/2011/10/111005110407.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins