Featured Research

from universities, journals, and other organizations

New 'diamond?' New form of superhard carbon is as strong as a diamond

Date:
October 11, 2011
Source:
Carnegie Institution
Summary:
Carbon is the fourth-most-abundant element in the universe and takes on a wide variety of forms, called allotropes, including diamond and graphite. Scientists have now discovered a new form of carbon, which is capable of withstanding extreme pressure stresses that were previously observed only in diamond.

Carbon is the fourth-most-abundant element in the universe and takes on a wide variety of forms, called allotropes, including diamond and graphite. Scientists have now discovered a new form of carbon, which is capable of withstanding extreme pressure stresses that were previously observed only in diamond.
Credit: adimas / Fotolia

Carbon is the fourth-most-abundant element in the universe and takes on a wide variety of forms, called allotropes, including diamond and graphite. Scientists at Carnegie's Geophysical Laboratory are part of a team that has discovered a new form of carbon, which is capable of withstanding extreme pressure stresses that were previously observed only in diamond.

Related Articles


This breakthrough discovery will be published in Physical Review Letters.

The team was led by Stanford's Wendy L. Mao and her graduate student Yu Lin and includes Carnegie's Ho-kwang (Dave) Mao, Li Zhang, Paul Chow, Yuming Xiao, Maria Baldini, and Jinfu Shu. The experiment started with a form of carbon called glassy carbon, which was first synthesized in the 1950s, and was found to combine desirable properties of glasses and ceramics with those of graphite. The team created the new carbon allotrope by compressing glassy carbon to above 400,000 times normal atmospheric pressure.

This new carbon form was capable of withstanding 1.3 million times normal atmospheric pressure in one direction while confined under a pressure of 600,000 times atmospheric levels in other directions. No substance other than diamond has been observed to withstand this type of pressure stress, indicating that the new carbon allotrope must indeed be very strong.

However, unlike diamond and other crystalline forms of carbon, the structure of this new material is not organized in repeating atomic units. It is an amorphous material, meaning that its structure lacks the long-range order of crystals. This amorphous, superhard carbon allotrope would have a potential advantage over diamond if its hardness turns out to be isotropic -- that is, having hardness that is equally strong in all directions. In contrast, diamond's hardness is highly dependent upon the direction in which the crystal is oriented.

"These findings open up possibilities for potential applications, including super hard anvils for high-pressure research and could lead to new classes of ultradense and strong materials," said Russell Hemley, director of Carnegie's Geophysical Laboratory.

This research was funded, in part, by the Department of Energy's Office of Basic Energy Sciences Division of Materials Sciences and Engineering, EFree, HPCAT, where some of the experiments were performed, is funded by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS, where some of the experiments were performed, is supported by DOE-BES.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yu Lin, Li Zhang, Ho-kwang Mao, Paul Chow, Yuming Xiao, Maria Baldini, Jinfu Shu, and Wendy L. Mao. Amorphous diamond: A high-pressure superhard carbon allotrope. Physical Review Letters, 2011 (in press) [link]

Cite This Page:

Carnegie Institution. "New 'diamond?' New form of superhard carbon is as strong as a diamond." ScienceDaily. ScienceDaily, 11 October 2011. <www.sciencedaily.com/releases/2011/10/111011121408.htm>.
Carnegie Institution. (2011, October 11). New 'diamond?' New form of superhard carbon is as strong as a diamond. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2011/10/111011121408.htm
Carnegie Institution. "New 'diamond?' New form of superhard carbon is as strong as a diamond." ScienceDaily. www.sciencedaily.com/releases/2011/10/111011121408.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Amorphous Diamond, a New Super-Hard Form of Carbon Created Under Ultrahigh Pressure

Oct. 17, 2011 A new form of carbon that rivals diamonds in its hardness, but has an amorphous structure similar to glass, has been produced under ultrahigh pressure in laboratory ... read more

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins