Featured Research

from universities, journals, and other organizations

Borrowing from brightly-colored birds: Physicists develop lasers inspired by nature

Date:
October 13, 2011
Source:
Optical Society of America
Summary:
Researchers are studying how two types of nanoscale structures on the feathers of birds produce brilliant and distinctive colors. The researchers are hoping that by borrowing these nanoscale tricks from nature they will be able to produce new types of lasers--ones that can assemble themselves by natural processes.

This is a network laser based on feathers with the channel-type nanostructure. This laser consists of interconnecting nano-channels (white) in a semiconductor membrane. (Scale bar = 2 micrometers.)
Credit: Image courtesy of Hui Cao Research Laboratory / Yale University

Researchers at Yale University are studying how two types of nanoscale structures on the feathers of birds produce brilliant and distinctive colors. The researchers are hoping that by borrowing these nanoscale tricks from nature they will be able to produce new types of lasers -- ones that can assemble themselves by natural processes.

The team will present their findings at the Optical Society's (OSA) Annual Meeting, Frontiers in Optics (FiO) 2011 (http://www.frontiersinoptics.com/), taking place in San Jose, Calif. next week.

Many of the colors displayed in nature are created by nanoscale structures that scatter light strongly at specific frequencies. In some cases, these structures create iridescence, where colors change with the angle of view -- like the shifting rainbows on a soap bubble. In other cases, the hues produced by the structures are steady and unchanging. The mechanism by which angle-independent colors are produced stumped scientists for 100 years: at first glance, these steady hues appeared to have been produced by a random jumble of proteins. But when researchers zoomed in on small sections of the protein at a time, quasi-ordered patterns began to emerge. The scientists found that it is this short-range order that scatters light preferentially at specific frequencies to produce the distinctive hues of a bluebird's wings, for example.

Inspired by feathers, the Yale physicists created two lasers that use this short-range order to control light. One model is based on feathers with tiny spherical air cavities packed in a protein called beta-keratin. The laser based on this model consists of a semiconductor membrane full of tiny air holes that trap light at certain frequencies. Quantum dots embedded between the holes amplify the light and produce the coherent beam that is the hallmark of a laser. The researchers also built a network laser using a series of interconnecting nano-channels, based on their observations of feathers whose beta-keratin takes the form of interconnecting channels in "tortuous and twisting forms." The network laser produces its emission by blocking certain colors of light while allowing others to propagate. In both cases, researchers can manipulate the lasers' colors by changing the width of the nano-channels or the spacing between the nano-holes.

What makes these short-range-ordered, bio-inspired structures different from traditional lasers is that, in principle, they can self-assemble, through natural processes similar to the formation of gas bubbles in a liquid. This means that engineers would not have to worry about the nanofabrication of the large-scale structure of the materials they design, resulting in cheaper, faster, and easier production of lasers and light-emitting devices.

One potential application for this work includes more efficient solar cells that can trap photons before converting them into electrons. The technology could also yield long-lasting paint, which could find uses in processes such as cosmetics and textiles. "Chemical paint will always fade," says lead author Hui Cao. But a physical "paint" whose nanostructure determines its color will never change. Cao describes a 40-million-year-old beetle fossil that her lab examined recently, and which had color-producing nanostructures. "With my eyes I can still see the color," she said. "It really lasts for a very long time."


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Cite This Page:

Optical Society of America. "Borrowing from brightly-colored birds: Physicists develop lasers inspired by nature." ScienceDaily. ScienceDaily, 13 October 2011. <www.sciencedaily.com/releases/2011/10/111012113557.htm>.
Optical Society of America. (2011, October 13). Borrowing from brightly-colored birds: Physicists develop lasers inspired by nature. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/10/111012113557.htm
Optical Society of America. "Borrowing from brightly-colored birds: Physicists develop lasers inspired by nature." ScienceDaily. www.sciencedaily.com/releases/2011/10/111012113557.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins